Hard rock life

Dec 09, 2013

Scientists are digging deep into the Earth's surface collecting census data on the microbial denizens of the hardened rocks. What they're finding is that, even miles deep and halfway across the globe, many of these communities are somehow quite similar.

The results, which were presented at the American Geophysical Union conference Dec. 8, suggest that these communities may be connected, said Matthew Schrenk, Michigan State University geomicrobiologist.

"Two years ago we had a scant idea about what microbes are present in subsurface rocks or what they eat," he said. "We're now getting this emerging picture not only of what sort of organisms are found in these systems but some consistency between sites globally – we're seeing the same types of organisms everywhere we look."

Schrenk leads a team funded by the Alfred P. Sloan Foundation's Deep Carbon Observatory studying samples from deep underground in California, Finland and from mine shafts in South Africa. The scientists also collect microbes from the deepest hydrothermal vents in the Caribbean Ocean.

"It's easy to understand how birds or fish might be similar oceans apart," Schrenk said. "But it challenges the imagination to think of nearly identical microbes 16,000 kilometers apart from each other in the cracks of hard rock at , pressures and temperatures."

Cataloging and exploring this region, a relatively unknown biome, could lead to breakthroughs in offsetting climate change, the discovery of new enzymes and processes that may be useful for biofuel and biotechnology research, he added.

For example, Schrenk's future efforts will focus on unlocking answers to what carbon sources the use, how they cope in such extreme conditions as well as how their enzymes evolved to function so deep underground.

"Integrating this region into existing models of global biogeochemistry and gaining better understanding into how deep rock-hosted organisms contribute or mitigate greenhouse gases could help us unlock puzzles surrounding modern-day Earth, ancient Earth and even other planets," Schrenk said.

Collecting and comparing microbiological and geochemical data across continents is made possible through the DCO. The DCO has allowed scientists from across disciplines to better understand and describe these phenomena, he added.

Explore further: New formula for fast, abundant hydrogen production may help power fuel cells

Related Stories

'Underground Galapagos' excites scientists

Mar 16, 2013

Diverse underground ecosystems buried deep beneath the Earth's crust may offer clues to the origins of life on Earth, several recent studies have revealed.

Recommended for you

Huge waves measured for first time in Arctic Ocean

3 hours ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

New research reveals Pele is powerful, even in the sky

9 hours ago

One might assume that a tropical storm moving through volcanic smog (vog) would sweep up the tainted air and march on, unchanged. However, a recent study from atmospheric scientists at the University of Hawai'i ...

Image: Wildfires continue near Yellowknife, Canada

9 hours ago

The wildfires that have been plaguing the Northern Territories in Canada and have sent smoke drifting down to the Great Lakes in the U.S. continue on. NASA's Aqua satellite collected this natural-color image ...

Excavated ship traced to Colonial-era Philadelphia

11 hours ago

Four years ago this month, archeologists monitoring the excavation of the former World Trade Center site uncovered a ghostly surprise: the bones of an ancient sailing ship. Tree-ring scientists at Columbia ...

User comments : 0