A model grass gets its genomic profile

Dec 13, 2013
Figure 1: A new cDNA library for the purple false brome Brachypodium distachyon provides an invaluable resource for plant geneticists. Credit: Wikimedia Commons / Matt Lavin

The grass species known as the purple false brome, Brachypodium distachyon, has great potential as a model plant for research due to its short generation time, small size, small genome and ease of breeding. These features make the grass species an attractive stand-in for less tractable but agriculturally important crops such as wheat and barley. However, to fully realize the potential of Brachypodium as a laboratory tool, scientists need more sophisticated genetic resources than are currently available.

Keiichi Mochida and colleagues from the RIKEN Center for Sustainable Resource Science have now constructed a comprehensive collection of all the DNA sequences in the Brachypodium that are transcribed into protein-coding messenger RNA (mRNA). This resource, known as a complementary DNA (cDNA) library, should help plant biologists to create more robust for food and biofuel production.

Model plant systems are essential for the genome-guided breeding of more resilient and higher-yielding crops. "Brachypodium distachyon is a for analyzing the genetic functions and biological systems in temperate grasses, cool-season cereals and dedicated biofuel crops," explains Mochida. "The improved gene annotation based on full-length cDNAs provides essential information for identifying useful genes involved in various plant processes such as stress tolerance and biomass production," he says.

Mochida and his colleagues in the Biomass Research Platform Team and the Integrated Genome Informatics Research Unit extracted RNA from 21 different tissue samples of an inbred line of B. distachyon called Bd21. Using the 'CAP trapper' method developed more than a decade ago by scientists at RIKEN, Mochida's team obtained more than 78,000 short fragments of mRNA sequences. From this larger pool, the researchers assembled around 16,000 full-length 'clones' of cDNA.

With these clones in hand, the researchers updated and improved the existing Brachypodium , adding structural information relating to some 10,000 genes across the plant's five chromosomes. Mochida's team found around 580 genes that had not been recognized as protein-coding stretches of DNA from previous bioinformatic analyses of the genome sequence and 362 novel genes identified for the first time in Bd21.

The researchers integrated this information with sequence data available from other economically important in a public resource called the RIKEN Brachypodium FLcDNA database (RBFLDB). According to Mochida, the database now offers a "one-stop shop" for all genomic information in the Pooideae subfamily of grasses, which includes many major cereal crops. "Brachypodium now possesses all the features of a modern model organism," Mochida says.

Explore further: Bacterial tenants in fungal quarters

More information: Mochida, K., Uehara-Yamaguchi, Y., Takahashi, F., Yoshida, T., Sakurai, T. & Shinozaki, K. Large-scale collection and analysis of full-length cDNAs from Brachypodium distachyon and integration with Pooideae sequence resources. PLoS One 8, e75265 (2013). dx.doi.org/10.1371/journal.pone.0075265

Related Stories

Have you had your cereal today?

Jun 20, 2013

Cereals are grasses that produce grains, the bulk of our food supply. Carnegie's Plant Biology Department is releasing genome-wide metabolic complements of several cereals including rice, barley, sorghum, and millet. Along ...

Recommended for you

Bacterial tenants in fungal quarters

11 hours ago

Ludwig Maximilian University of Munich researchers have sequenced the genome of a bacterial symbiont hosted by a mycorrhizal fungus. Analysis of the symbiont's genetic endowment reveals previously unknown ...

First step towards global attack on potato blight

May 28, 2015

European researchers and companies concerned with the potato disease phytophthora will work more closely with parties in other parts of the world. The first move was made during the biennial meeting of the ...

Bacteria study could have agricultural impact

May 28, 2015

Wichita State University microbiology professor Mark Schneegurt and ornithology professor Chris Rogers have discovered that one of North America's most common migratory birds – the Dark-eyed Junco – carries ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.