A model grass gets its genomic profile

Dec 13, 2013
Figure 1: A new cDNA library for the purple false brome Brachypodium distachyon provides an invaluable resource for plant geneticists. Credit: Wikimedia Commons / Matt Lavin

The grass species known as the purple false brome, Brachypodium distachyon, has great potential as a model plant for research due to its short generation time, small size, small genome and ease of breeding. These features make the grass species an attractive stand-in for less tractable but agriculturally important crops such as wheat and barley. However, to fully realize the potential of Brachypodium as a laboratory tool, scientists need more sophisticated genetic resources than are currently available.

Keiichi Mochida and colleagues from the RIKEN Center for Sustainable Resource Science have now constructed a comprehensive collection of all the DNA sequences in the Brachypodium that are transcribed into protein-coding messenger RNA (mRNA). This resource, known as a complementary DNA (cDNA) library, should help plant biologists to create more robust for food and biofuel production.

Model plant systems are essential for the genome-guided breeding of more resilient and higher-yielding crops. "Brachypodium distachyon is a for analyzing the genetic functions and biological systems in temperate grasses, cool-season cereals and dedicated biofuel crops," explains Mochida. "The improved gene annotation based on full-length cDNAs provides essential information for identifying useful genes involved in various plant processes such as stress tolerance and biomass production," he says.

Mochida and his colleagues in the Biomass Research Platform Team and the Integrated Genome Informatics Research Unit extracted RNA from 21 different tissue samples of an inbred line of B. distachyon called Bd21. Using the 'CAP trapper' method developed more than a decade ago by scientists at RIKEN, Mochida's team obtained more than 78,000 short fragments of mRNA sequences. From this larger pool, the researchers assembled around 16,000 full-length 'clones' of cDNA.

With these clones in hand, the researchers updated and improved the existing Brachypodium , adding structural information relating to some 10,000 genes across the plant's five chromosomes. Mochida's team found around 580 genes that had not been recognized as protein-coding stretches of DNA from previous bioinformatic analyses of the genome sequence and 362 novel genes identified for the first time in Bd21.

The researchers integrated this information with sequence data available from other economically important in a public resource called the RIKEN Brachypodium FLcDNA database (RBFLDB). According to Mochida, the database now offers a "one-stop shop" for all genomic information in the Pooideae subfamily of grasses, which includes many major cereal crops. "Brachypodium now possesses all the features of a modern model organism," Mochida says.

Explore further: New database catalogs thousands of genetic variants in cassava—one of the world's primary food sources

More information: Mochida, K., Uehara-Yamaguchi, Y., Takahashi, F., Yoshida, T., Sakurai, T. & Shinozaki, K. Large-scale collection and analysis of full-length cDNAs from Brachypodium distachyon and integration with Pooideae sequence resources. PLoS One 8, e75265 (2013). dx.doi.org/10.1371/journal.pone.0075265

add to favorites email to friend print save as pdf

Related Stories

Have you had your cereal today?

Jun 20, 2013

Cereals are grasses that produce grains, the bulk of our food supply. Carnegie's Plant Biology Department is releasing genome-wide metabolic complements of several cereals including rice, barley, sorghum, and millet. Along ...

Recommended for you

Different watering regimes boost crop yields

12 minutes ago

Watering tomato plants less frequently could improve yields in saline conditions, according to a study of the impact of water and soil salinity on vegetable crops.

Woolly mammoth genome sequencer at UWA

1 hour ago

How can a giant woolly mammoth which lived at least 200,000 years ago help to save the Tasmanian Devil from extinction? The answer lies in DNA, the carrier of genetic information.

Battling superbugs with gene-editing system

19 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

For legume plants, a new route from shoot to root

Sep 19, 2014

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into ...

User comments : 0