What can a graphene sandwich reveal about proteins?

Dec 11, 2013 by Wendy Ellison
Artist impression of a graphene sheet. Credit: The University of Manchester

(Phys.org) —Stronger than steel, but only one atom thick - latest research using the 2D miracle material graphene could be the key to unlocking the mysteries around the structure and behaviour of proteins in the very near future.

Scientists at The University of Manchester and the SuperSTEM facility, which is located at STFC's Daresbury Laboratory and funded by the Engineering and Physical Sciences Research Council (EPSRC), have discovered that the most fragile, microscopic materials can be protected from the harmful effects of radiation when under the microscope if they are 'sandwiched' between two sheets of . The technique could soon be the key to enabling the direct study of every single individual atom in a , something yet to be achieved, and revolutionise our understanding of cell structure, how the immune system reacts to viruses and aid in the design of new antiviral drugs.

Observing the structure of some the tiniest of objects, such as proteins and other sensitive 2D materials, at the atomic scale requires a powerful electron microscope. This is exceptionally difficult because the radiation from the can destroy the highly fragile object being imaged before any useful data can be accurately recorded. However, by protecting fragile objects between two sheets of graphene it means they can be imaged for longer without damage under the electron beam, making it possible to quantitatively identify every single atom within the structure. This technique has proven very successful on the test case of a fragile in-organic 2D crystal and the results published in the journal ACS Nano.

During this research, the team of scientists, which included Sir Kostya Novoselov, who shared a Nobel Prize in Physics in 2010 for exploiting the remarkable properties of graphene, were able to observe the effects of encapsulating a microscopic crystal of another highly fragile 2D material, molybdenum di-sulfide, between two sheets of graphene. They found that they were able to apply a high electron beam to directly image, identify and obtain complete chemical analysis of each and every atom within the molybdenum di-sulfide sheet, without causing any defects to the material through radiation.

The University of Manchester's Dr Recep Zan, who led the research team, said: "Graphene is a million times thinner than paper, yet stronger than steel, with fantastic potential in areas from electronics to energy. But this research shows its potential in biochemistry could also be just as significant, and could eventually open up all sorts of applications in the biotechnology arena."

Professor Quentin Ramasse, Scientific Director at SuperSTEM added: "What this research demonstrates is not so much about graphene itself, but how it can impact the detail and accuracy at which we can directly study other inorganic 2D materials or highly fragile molecules. Until now this has mostly been possible through less direct and often complicated methods such as protein crystallography which do not provide a direct visualisation of the object in question. This new capability is particularly exciting because it could pave the way to being able to image every single atom in a protein chain for example, something which could significantly impact our development of treatments for conditions such as cancer, Alzheimer's and HIV."

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: R. Zan (corresponding author) et al. "Control of Radiation Damage in MoS2 by Graphene Encapsulation" ACS Nano, DOI: 10.1021/nn4044035 , 7(11), pp 10167–10174)

Related Stories

Condom mechanics of graphene

Nov 22, 2013

Wonder material graphene faces its stiffest challenge yet – providing thinner, stronger, safer and more desirable condoms.

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.