Functional diversity in bacterial defense mechanism against viral invasion

Dec 06, 2013
Figure 1: Structure of the Cmr complex, which contributes to bacterial antiviral defense. Each color represents a different protein component and the dashed line indicates a channel where the crRNA is likely to reside. Credit: Elsevier

Bacteria may lack a true immune system, but this does not leave them defenseless against bacteriophage viruses and other pathogens. A system of genomic sequence elements called clustered regularly interspaced short palindromic repeats (CRISPR) and various CRISPR-associated proteins (Cas) help to recognize and destroy foreign genetic material delivered by such invaders.

An international research group led by Akeo Shinkai from the RIKEN SPring-8 Center and John van der Oost of Wageningen University in the Netherlands has now dissected one such CRISPR-Cas pathway, revealing functional insights that also highlight important differences in how these systems operate across bacterial species.

The researchers focused their attention on Thermus thermophilus, a bacterium that thrives at high temperatures and features a relatively simple and compact genome, making it amenable to experimental work. Of the bacterium's multiple CRISPR-Cas pathways, the researchers explored the pathway known as subtype III-B, which targets foreign RNA rather than DNA.

Every CRISPR element contains multiple repeats of gene sequences separated by unique spacer sequences, each of which corresponds to a potential CRISPR-Cas target. Importantly, the CRISPR-Cas system also collects 'trophies' from novel invaders, incorporating their sequence information into new CRISPR-spacer elements, thus enabling future recognition of the same pathogen. These CRISPR genes are transcribed to produce spacer-specific CRISPR RNAs (crRNAs), which combine with a collection of Cas proteins known as the Cmr complex. Shinkai and van der Oost were able to isolate the Cmr complex and identified an elongated structure that they describe as resembling a 'sea worm', with a channel that could potentially accommodate the crRNA strand (Fig. 1).

The researchers were also able to isolate these associated crRNAs and determined that Cmr predominantly uses spacer sequences from just 4 of the 11 CRISPR loci in the T. thermophilus genome. They also identified a surprising mechanism for Cmr-induced cleavage, where the complex cuts at multiple sites at fixed distances along the target, as opposed to the sequence-specific or single-site cleavage mechanisms identified in other CRISPR-Cas pathways. "The T. thermophilus Cmr complex may have evolved to kill bacteriophages as quickly as possible," says Shinkai. "This demonstrates the diversity of the CRISPR-Cas system."

Shinkai and his colleagues now hope to probe the three-dimensional structure of the complex in more depth and to embark on similar analyses for the other CRISPR-Cas pathways active in T. thermophilus. "This will hopefully lead to a more systematic understanding of these systems within the cell and of the diversity of these systems in the microbial world," says Shinkai.

Explore further: Powerful tool for genetic engineering: Researchers describe new possibilities of the CRISPR-Cas-system

More information: Staals, R. H. J., Agari, Y., Maki-Yonekura, S., Zhu, Y., Taylor, D. W., van Duijn, E., Barendregt, A., Vlot, M., Koehorst, J. J., Sakamoto, K. et al. Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus. Molecular Cell 52, 135–145 (2013). dx.doi.org/10.1016/j.molcel.2013.09.013

add to favorites email to friend print save as pdf

Related Stories

Researchers clarify bacterial resistance

Jun 24, 2011

Just like plants and animals, bacteria have a range of defence mechanisms against viruses and other threats. Dutch researchers at the Wageningen Laboratory for Microbiology and their American and Russian colleagues have largely ...

The many faces of the bacterial defense system

Apr 30, 2013

Even bacteria have a kind of "immune system" they use to defend themselves against unwanted intruders – in their case, viruses. Scientists at the Helmholtz Center for Infection Research (HZI) in Braunschweig, ...

Recommended for you

Researchers successfully clone adult human stem cells

11 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

14 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...