Research into fruit fly cells could lead to cancer insights

Jan 01, 2014

New research by scientists at the University of Exeter has shown that cells demonstrate remarkable flexibility and versatility when it comes to how they divide - a finding with potential links to the underlying causes of many cancers.

The study, published today in Developmental Cell, describes a number of routes to the formation of a microtubule spindle – the tracks along which DNA moves when a cell divides in order to make two genetically identical .

In order to understand the phenomenon, the authors, including Biosciences researchers Dr. James Wakefield, PhD student Daniel Hayward and Experimental Officer in Image Analysis, Dr. Jeremy Metz, combined highly detailed microscopy and with genetic and protein manipulation of fruit fly embryos.

The innovative research not only describes how the cell can use each pathway in a complementary way, but also that removal of one pathway leads to the cell increasing its use of the others. The researchers also identified that a central molecular complex – Augmin – was needed for all of these routes.

The authors were the first to identify that each of four pathways of spindle formation could occur in fruit fly embryos.

It was previously thought that, in order for chromosomes – packages containing DNA – to line up and be correctly separated, have to extend from specific microtubule-organising centres in the cell, called centrosomes. However, this study found that microtubules could additionally develop from the chromosomes themselves, or at arbitrary sites throughout the main body of the cell, if the centrosomes were missing.

All of these routes to spindle formation appeared to be dependent on Augmin - a protein complex responsible for amplifying the number of microtubules in the cell.

Dr. Wakefield said of the project "We have all these different spindle formation pathways working in humans. Because the cell is flexible in which pathway it uses to make the spindle, individuals who are genetically compromised in one pathway may well grow and develop normally. But it will mean they have fewer routes to spindle formation, theoretically predisposing them to errors in cell division as they age."

The group are currently investigating cancer links in light of these findings.

Explore further: Earliest stages of ear development involve a localized signaling cascade

Related Stories

EGF growth factor accelerates cell division, study finds

May 14, 2013

Biologists at Heidelberg University have discovered new approaches for the treatment of cancer. They investigated how a special signalling molecule, the epidermal growth factor (EGF), stimulates the separation of chromosomes ...

A unique arrangement for egg cell division

Aug 09, 2007

Which genes are passed on from mother to child is decided very early on during the maturation of the egg cell in the ovary. In a cell division process that is unique to egg cells, half of the chromosomes are eliminated from ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.