A frequency conversion interface to the telecommunications band using nanophotonics

December 19, 2013 by Kartik Srinivasan
s shown in the schematic, in frequency downconversion, an input signal at 980 nm is frequency shifted to the 1550 nm wavelength band through the application of two strong pump lasers. The reverse process of upconversion (shifting an input signal from 1550 nm to 980 nm) was also demonstrated. Inset: Scanning electron micrograph of the cross-section of a silicon nitride waveguide designed for the frequency conversion with a simulation of the device's optical field profile superimposed.

Using nanofabricated waveguides in a silicon-based platform, researchers from the NIST Center for Nanoscale Science and Technology (CNST) have developed a frequency conversion interface between the optical transition wavelengths in quantum dots and in naturally occurring atoms and the telecommunications wavelength band.* Optical frequency conversion is an important resource for applications in both classical and quantum information processing, where it can link components of a system that perform optimally at their specific tasks, but operate at different wavelengths.

In this work, the researchers focused on an interface between near-infrared wavelengths below 1000 nm, where systems like semiconductor and neutral alkali atoms have their optical transitions, and the band of 1550 nm, which is the lowest loss wavelength through which light propagates in an optical fiber. To develop this interface, they built upon previous work in which they demonstrated that a low-noise process called four-wave-mixing Bragg scattering could be realized in silicon nitride waveguides fabricated on a silicon substrate. While that work focused on demonstrating conversion over a range of a few nanometers with conversion efficiencies reaching a few percent, here the authors extended the conversion range to nearly 600 nm. This improvement was made possible by the nature of the four-wave-mixing process, in which the locations of the two pump fields, input signal, and converted signal can be re-arranged while preserving the requirements of energy and momentum conservation.

The authors demonstrated that the process was bi-directional (signals can be converted from 980 nm to 1550 nm and back), and developed designs to interface light at wavelengths all the way down to 637 nm—characteristic of the nitrogen vacancy center in diamond—with the 1550 nm band.

Future work will be focused on significantly increasing the conversion efficiency levels of these devices by optimizing the geometries and using resonant cavities.

Explore further: This little light of mine: Changing the color of single photons emitted by quantum dots

More information: A chip-scale, telecommunications-band frequency conversion interface for quantum emitters, I. Agha, S. Ates, M. Davanço, and K. Srinivasan, Optics Express 21, 21628–21638 (2013). dx.doi.org/10.1364/OE.21.021628

Related Stories

Wideband wavelength conversion using cavity optomechanics

August 22, 2013

A team of researchers at the NIST Center for Nanoscale Science and Technology (CNST), the University of Maryland, and the California Institute of Technology have demonstrated optical wavelength conversion using interactions ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.