The rise and fall of galactic cities

Dec 19, 2013
The collection of red dots seen near the center of this image show one of several very distant galaxy clusters discovered by combining ground-based optical data from the National Optical Astronomy Observatory's Kitt Peak National Observatory with infrared data from NASA's Spitzer Space Telescope. This galaxy cluster, named ISCS J1434.7+3519, is located about 9 billion light-years from Earth. The large white and yellow dots in this picture are stars in our galaxy, while the rest of the smaller dots are distant galaxies. The cluster, comprised of red dots near the center, includes more than 100 massive galaxies. Spitzer was able to capture prodigious levels of star formation occurring in the galaxies that live in this cluster. Some of them are forming stars hundreds of times faster than our own Milky Way galaxy. Infrared light in this image has been colored red; and visible light, blue and green. Credit: JPL/NASA

(Phys.org) —In the fable of the town and country mice, the country mouse visits his city-dwelling cousin to discover a world of opulence. In the early cosmos, billions of years ago, galaxies resided in the equivalent of urban or country environments. Those that dwelled in crowded areas called clusters also experienced a kind of opulence, with lots of cold gas, or fuel, for making stars.

Today, however, these galactic metropolises are ghost towns, populated by galaxies that can no longer form stars. How did they get this way and when did the fall of galactic cities occur?

A new study from NASA's Spitzer Space Telescope finds evidence that these urban galaxies, or those that grew up in clusters, dramatically ceased their star-making ways about 9 billion years ago (our universe is 13.8 billion years old). These galactic metropolises either consumed or lost their fuel. Galaxies in the countryside, by contrast, are still actively forming stars.

"We know the we see around us today are basically dead, but how did they get that way?" wondered Mark Brodwin of the University of Missouri-Kansas City, lead author of this paper, published in the Astrophysical Journal. "In this study, we addressed this question by observing the last major growth spurt of , which happened billions of years ago."

Researchers studying distant galaxies get a peek into the past since the galaxies' light takes time, sometimes billions of years, to reach us. Brodwin and his colleagues used Spitzer to study 16 galaxy clusters that existed between the time our universe was 4.3 and 6 billion years old. Spitzer's infrared vision allows it see the dust warmed by new stars, revealing rates. NASA's Hubble Space Telescope and the W.M. Keck Observatory were used to measure the galaxies' distances from Earth.

This is one of the most comprehensive looks at clusters yet, revealing new surprises about their environments. Previous observations of relatively nearby clusters suggested that the urban, cluster galaxies produced all their stars early in the history of our universe in one big burst. This theory, called monolithic collapse, predicted that these tight-knit galaxies would have used all their fuel at once in an early, youthful frenzy. But the new study shows this not to be the case: The urban galaxies continued to make stars longer than expected, until suddenly production came to a halt around 9 billion years ago, or about 3 billion years later than previously thought.

A second study using observations from the Herschel Space Observatory, led by Stacey Alberts at the University of Massachusetts-Amherst and published in the Monthly Notices of the Royal Astronomical Society journal, finds a similar transition epoch. Alberts and colleagues observed 300 clusters over a longer period of time, dating back to when the universe was 4 to 10 billion years old. Herschel, which ran out of coolant in April of 2013 as expected, detected longer wavelengths of infrared light than Spitzer, which is still up and running. The two telescopes complement each other, allowing scientists to confirm results and probe different aspects of cosmic conundrums.

"We find that around 9 billion years ago, cluster galaxies were as active as their counterparts outside of clusters; however, their rate of star formation decreases dramatically between then and now, much more quickly than we see in isolated galaxies," said Alberts.

Why do the urban galaxies shut down their star formation sooner and more rapidly than the country bumpkins? Brodwin says this may have to do with galaxy mergers. The more crowded a galactic environment, as is the case in young, growing galaxy clusters, the more often two galaxies will collide and merge. Galaxy mergers induce bursts of fuel-consuming star formation, and also feed growing supermassive black holes, which then blast out radiation that heats up the gas and quickly shuts off the star formation.

"It's as if boom times for in clusters ended with a sudden widespread collapse," said Peter Eisenhardt of NASA's Jet Propulsion Laboratory, Pasadena, Calif., who led a previous study that identified the distant galaxy cluster sample used by Brodwin and Alberts. "They go from vibrantly forming new stars to the quiescent state they've been in for the last half of the history of the universe, and the switch happens surprisingly fast."

Explore further: Galactic clusters low on hydrogen

Related Stories

Galactic clusters low on hydrogen

Nov 25, 2013

Astronomers at Swinburne University of Technology and their international collaborators have found evidence that galaxies that are located in groups might be running out of gas.

Monster galaxies lose their appetite with age

Aug 01, 2013

(Phys.org) —Our universe is filled with gobs of galaxies, bound together by gravity into larger families called clusters. Lying at the heart of most clusters is a monster galaxy thought to grow in size ...

Soft shells and strange star clusters

Oct 10, 2013

The beautiful, petal-like shells of galaxy PGC 6240 are captured here in intricate detail by the NASA/ESA Hubble Space Telescope, set against a sky full of distant background galaxies. This cosmic bloom is ...

Recommended for you

Witnessing the early growth of a giant

11 hours ago

Astronomers have uncovered for the first time the earliest stages of a massive galaxy forming in the young Universe. The discovery was made possible through combining observations from the NASA/ESA Hubble ...

Evidence for supernovas near Earth

17 hours ago

Once every 50 years, more or less, a massive star explodes somewhere in the Milky Way. The resulting blast is terrifyingly powerful, pumping out more energy in a split second than the sun emits in a million ...

What lit up the universe?

Aug 27, 2014

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

Eta Carinae: Our Neighboring Superstars

Aug 26, 2014

(Phys.org) —The Eta Carinae star system does not lack for superlatives. Not only does it contain one of the biggest and brightest stars in our galaxy, weighing at least 90 times the mass of the Sun, it ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GSwift7
not rated yet Dec 31, 2013
I wonder what percentage of galaxies follow the observed patterns?

It's always interesting when we find patterns that exist on such grand scales. I think the next 20 years of observations (specifically from the JWST and Atacam array) will reveal things like the pattern above that we never imagined. On the bright side, patterns like the one above might not be readily explainable, but each observation of this type is another dot that helps fill in the complete picture as you connect them. An example of this process on a more local scale is the HR diagram, which was only possible after compiling a sifficient number of stellar observations, or Hubble's law after that. Each of them is likea building block which allowed us to construct a more complicated idea.