Elucidating biological cells' transport mechanisms

December 20, 2013

A new study focuses on the motion of motor proteins in living cells, applying a physicist's tool called non-equilibrium statistical mechanics

Motion fascinates physicists. It becomes even more intriguing when observed in vivo in . Using an ingenious setup, Japanese scientists have now calculated the force of molecular motors acting on inner components of biological cells, known as organelles. In a new study, published in EPJ E, the focus is on - akin to micrometric range cellular power plants - travelling along microtubules in a cell. These findings by Kumiko Hayashi, from Tohoku University, Sendai, Japan, and team could contribute to elucidating the transport mechanism in biological cells by multiple motors.

Hayashi and colleagues have investigated, for the first time, the so-called Einstein relation for the of mitochondria transported by motor proteins - called kinesin and dynein - in . The Einstein relation describes how micro-sized beads follow a random motion under the influence of thermal noise, when diffusing in aqueous solutions. This relation stems from the fluctuation dissipation theorem studied in the field of non-equilibrium statistical mechanics.

The researchers observed the motion of a mitochondrion transported by motor proteins using fluorescence microscopy. They applied a single-particle tracking algorithm to the images of fluorescently tagged mitochondria. They then compared this motion with the of a bead artificially incorporated into a cell, observed by using fluorescence correlation spectroscopy.

By comparing both evaluations of the diffusion coefficient, from both mitochondria and bead estimates, they found that the value of the medium's viscosity obtained using the beads was slightly lower than that obtained using the organelle motion. This discrepancy is linked to the fact that physical laws such as the Einstein relation are not sufficient to fully describe the organelles' motion, which is subjected to many simultaneous complex biological processes, such as the chemical reaction of and the interaction with the cell's vesicles.

Explore further: New technique unravels transport in living brain cells

More information: K. Hayashi et al. (2013), Viscosity and drag force involved in organelle transport: Investigation of the fluctuation dissipation theorem, European Physical Journal E 36: 136, DOI: 10.1140/epje/i2013-13136-6

Related Stories

New technique unravels transport in living brain cells

October 20, 2011

A new technique has made it possible to study the functioning of motor proteins in living brain cells. Previously, this could previously only be done under artificial conditions outside the cell. Motor proteins transport ...

Tom22, the bouncer of the mitochondrion

October 4, 2013

Mitochondria burn sugar and supply the cell with energy. They were long thought to be structures that are relatively independent of the cell. However, Carolin Gerbeth, a PhD student from the trinational research training ...

Mitochondria separate their waste

November 29, 2013

In order to protect themselves from harmful substances, cells need to keep the mitochondria - the boiler room, so to speak - shipshape. Up to now, it was unclear whether this housekeeping work involves sorting out defective ...

Recommended for you

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

DNA chip offers big possibilities in cell studies

August 25, 2016

A UT Dallas physicist has developed a novel technology that not only sheds light on basic cell biology, but also could aid in the development of more effective cancer treatments or early diagnosis of disease.

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.