Elucidating biological cells' transport mechanisms

Dec 20, 2013

A new study focuses on the motion of motor proteins in living cells, applying a physicist's tool called non-equilibrium statistical mechanics

Motion fascinates physicists. It becomes even more intriguing when observed in vivo in . Using an ingenious setup, Japanese scientists have now calculated the force of molecular motors acting on inner components of biological cells, known as organelles. In a new study, published in EPJ E, the focus is on - akin to micrometric range cellular power plants - travelling along microtubules in a cell. These findings by Kumiko Hayashi, from Tohoku University, Sendai, Japan, and team could contribute to elucidating the transport mechanism in biological cells by multiple motors.

Hayashi and colleagues have investigated, for the first time, the so-called Einstein relation for the of mitochondria transported by motor proteins - called kinesin and dynein - in . The Einstein relation describes how micro-sized beads follow a random motion under the influence of thermal noise, when diffusing in aqueous solutions. This relation stems from the fluctuation dissipation theorem studied in the field of non-equilibrium statistical mechanics.

The researchers observed the motion of a mitochondrion transported by motor proteins using fluorescence microscopy. They applied a single-particle tracking algorithm to the images of fluorescently tagged mitochondria. They then compared this motion with the of a bead artificially incorporated into a cell, observed by using fluorescence correlation spectroscopy.

By comparing both evaluations of the diffusion coefficient, from both mitochondria and bead estimates, they found that the value of the medium's viscosity obtained using the beads was slightly lower than that obtained using the organelle motion. This discrepancy is linked to the fact that physical laws such as the Einstein relation are not sufficient to fully describe the organelles' motion, which is subjected to many simultaneous complex biological processes, such as the chemical reaction of and the interaction with the cell's vesicles.

Explore further: Mitochondria separate their waste

More information: K. Hayashi et al. (2013), Viscosity and drag force involved in organelle transport: Investigation of the fluctuation dissipation theorem, European Physical Journal E 36: 136, DOI: 10.1140/epje/i2013-13136-6

add to favorites email to friend print save as pdf

Related Stories

Mitochondria separate their waste

Nov 29, 2013

In order to protect themselves from harmful substances, cells need to keep the mitochondria - the boiler room, so to speak - shipshape. Up to now, it was unclear whether this housekeeping work involves sorting ...

Tom22, the bouncer of the mitochondrion

Oct 04, 2013

Mitochondria burn sugar and supply the cell with energy. They were long thought to be structures that are relatively independent of the cell. However, Carolin Gerbeth, a PhD student from the trinational research ...

New technique unravels transport in living brain cells

Oct 20, 2011

A new technique has made it possible to study the functioning of motor proteins in living brain cells. Previously, this could previously only be done under artificial conditions outside the cell. Motor proteins transport ...

Recommended for you

A new generation of storage—ring

5 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Universe may face a darker future

8 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

High-intensity sound waves may aid regenerative medicine

Oct 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.