Improving electron control

Dec 05, 2013
An artist's impression of the experiment: Individual electrons (blue) will cross a potential barrier (foreground) if they still have enough energy, and the barrier is low enough, when they arrive

In principle, the strange features of quantum mechanics can be accessed using single electrons as carriers of quantum information. However, while electrons can be captured in solid-state electrostatic traps, it is difficult to control them or to discover what happens to them once they are released.

Now, research from the National Physical Laboratory (NPL) has revealed key details about how are ejected from a trap and demonstrated that the electrons can actually be detected relatively far from the source.

The new research, published in Physical Review Letters, places an electrically-controlled barrier into the path of the electrons ejected from the trap. The strength of the barrier can be varied and the electrons will only cross the barrier if they retain enough energy to do so.

Using this technique, NPL's Quantum Detection Group found that the electrons travel for many micrometres before they lose energy - a large distance when considering the small scale of the experiment.

NPL's Jonathan Fletcher, who worked on the project, said:

"At a crude level, it's like a ballistics experiment where you find out how much energy a bullet has by firing it at a target and seeing whether or not it penetrates. The difference is that in this case the whole experiment is tiny. Our 'catapult' is a quantum dot, the projectile is a single electron, and the 'target' is an electrically-controlled barrier whose strength we can vary."

By rapidly turning the barrier on and off at different times the scientists could also probe the electrons with very precise time resolution. This technique works because the electrons are actually forced out of the pump by a trigger signal, against which the blocking detector can be synchronised.

The flexibility and resolution of this system was revealed by a new trick which emerged during the measurements. Two electrons ejected from a doubly loaded trap could actually be split into different paths using either the small energy or ejection time difference.

The measurement techniques described in this research could be used to guide the design of electron pumps or as part of a future method of transport using electrons.

Explore further: Quantum communication controlled by resonance in 'artificial atoms'

More information: J. D. Fletcher, P. See, H. Howe, M. Pepper, S. P. Giblin, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, T. J. B. M. Janssen, and M. Kataoka, "Clock-Controlled Emission of Single-Electron Wave Packets in a Solid-State Circuit." Phys. Rev. Lett. 111, 216807 (2013) DOI: 10.1103/PhysRevLett.111.216807

Physics Focus article: physics.aps.org/articles/v6/127

add to favorites email to friend print save as pdf

Related Stories

New nanodevice builds electricity from tiny pieces

Jul 06, 2012

(Phys.org) -- A team of scientists at the National Physical Laboratory (NPL) and University of Cambridge has made a significant advance in using nano-devices to create accurate electrical currents. Electrical ...

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

What can happen when graphene meets a semiconductor

Nov 21, 2013

For all the promise of graphene as a material for next-generation electronics and quantum computing, scientists still don't know enough about this high-performance conductor to effectively control an electric ...

Recommended for you

New approach to form non-equilibrium structures

8 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

10 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

14 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

14 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0