Improving electron control

Dec 05, 2013
An artist's impression of the experiment: Individual electrons (blue) will cross a potential barrier (foreground) if they still have enough energy, and the barrier is low enough, when they arrive

In principle, the strange features of quantum mechanics can be accessed using single electrons as carriers of quantum information. However, while electrons can be captured in solid-state electrostatic traps, it is difficult to control them or to discover what happens to them once they are released.

Now, research from the National Physical Laboratory (NPL) has revealed key details about how are ejected from a trap and demonstrated that the electrons can actually be detected relatively far from the source.

The new research, published in Physical Review Letters, places an electrically-controlled barrier into the path of the electrons ejected from the trap. The strength of the barrier can be varied and the electrons will only cross the barrier if they retain enough energy to do so.

Using this technique, NPL's Quantum Detection Group found that the electrons travel for many micrometres before they lose energy - a large distance when considering the small scale of the experiment.

NPL's Jonathan Fletcher, who worked on the project, said:

"At a crude level, it's like a ballistics experiment where you find out how much energy a bullet has by firing it at a target and seeing whether or not it penetrates. The difference is that in this case the whole experiment is tiny. Our 'catapult' is a quantum dot, the projectile is a single electron, and the 'target' is an electrically-controlled barrier whose strength we can vary."

By rapidly turning the barrier on and off at different times the scientists could also probe the electrons with very precise time resolution. This technique works because the electrons are actually forced out of the pump by a trigger signal, against which the blocking detector can be synchronised.

The flexibility and resolution of this system was revealed by a new trick which emerged during the measurements. Two electrons ejected from a doubly loaded trap could actually be split into different paths using either the small energy or ejection time difference.

The measurement techniques described in this research could be used to guide the design of electron pumps or as part of a future method of transport using electrons.

Explore further: Quantum communication controlled by resonance in 'artificial atoms'

More information: J. D. Fletcher, P. See, H. Howe, M. Pepper, S. P. Giblin, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, T. J. B. M. Janssen, and M. Kataoka, "Clock-Controlled Emission of Single-Electron Wave Packets in a Solid-State Circuit." Phys. Rev. Lett. 111, 216807 (2013) DOI: 10.1103/PhysRevLett.111.216807

Physics Focus article: physics.aps.org/articles/v6/127

add to favorites email to friend print save as pdf

Related Stories

New nanodevice builds electricity from tiny pieces

Jul 06, 2012

(Phys.org) -- A team of scientists at the National Physical Laboratory (NPL) and University of Cambridge has made a significant advance in using nano-devices to create accurate electrical currents. Electrical ...

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

What can happen when graphene meets a semiconductor

Nov 21, 2013

For all the promise of graphene as a material for next-generation electronics and quantum computing, scientists still don't know enough about this high-performance conductor to effectively control an electric ...

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.