The destructive power of sound waves

December 16, 2013 by Pete Brown
Air Force firefighters work to put out a fire as part of a simulated aircraft crash during an exercise at Andersen Air Force Base in Guam. The routine exercise is conducted at the base a few times a year to sharpen the mobility and wartime capabilities of participating service members. Credit: U.S. Air Force Photo / Staff Sgt. Bennie J. Davis III

Researchers at the University of Arizona College of Engineering have come up with a novel way to help the U.S. Air Force dispose of stockpiles of dangerous chemicals – using nothing more than sound waves.

The Air Force has a large stockpile – almost 11 million liters – of fire-extinguishing foam, which contains environmentally damaging organic compounds. Manish Keswani, an assistant professor in the Department of Materials Science and Engineering, and Reyes Sierra, a professor in the Department of Chemical and Environmental Engineering, have been awarded a $243,000 contract by the Air Force Civil Engineering Center to destroy the chemicals using a novel sonochemical process, which uses sound waves to break down complex and toxic molecules into nothing more than carbon dioxide and water.

"Sonolysis relies on the process of for its success," Keswani said. "Under certain conditions, cause the formation of small bubbles that rapidly implode and release an intense shock wave that produces enormous amounts of and a variety of highly active radicals, which can completely destroy adjacent material."

Cavitation is used in certain medical procedures and is also found in nature. Shock-wave lithotripsy relies on cavitation to destroy kidney stones, and mantis shrimps use cavitation when hunting their next meal. The shrimps strike with such velocity – about the speed of a bullet after it's fired – that they generate cavitation bubbles in the water between themselves and their target. Even if they don't make a direct strike, the resulting shock waves are enough to stun or kill their prey.

The heat energy unleashed by cavitation breaks down the bonds that tie large molecules together, such as the perfluoroalkyl sulfonates and carboxylates, or PFCs, found in fire-fighting foams. These toxic PFCs are hard to break down and tend to persist in the environment, and in body tissue, which is why the Air Force will be investigating cavitation as a cost-effective method of producing temperatures in excess of 10,000 degrees Fahrenheit, more than enough to incinerate the problem chemicals.

"One novel aspect of our acoustic technology is the use of multiple sound frequencies to treat large quantities of fire-fighting foam," Sierra said. Current sonolysis techniques use ultrasonic (20-100 kHz) or megasonic (> 0.5 MHz) frequencies, but results have been disappointing in terms of the volume of material that can be treated using these frequency ranges.

Keswani and Sierra will study the effectiveness of a dual-transducer system they have developed. It uses both ultrasonic and megasonic frequencies and can be scaled up to treat the Air Force's large stockpile of toxic fire-fighting chemicals. Their objective is to develop a system that will produce the required high incineration temperatures and desired concentration of active oxidizing radicals while consuming the least amount of energy. They also have developed an electrochemical probe that can quickly and economically identify the most effective chemical and acoustic conditions for degrading the toxic chemicals.

Explore further: I'm forever imploding bubbles

Related Stories

I'm forever imploding bubbles

April 7, 2009

The National Physical Laboratory (NPL) has developed the first sensor capable of measuring localized ultrasonic cavitation - the implosion of bubbles in a liquid when a high frequency sound wave is applied. The sensor will ...

Seeing sound in a new light

November 24, 2011

The National Physical Laboratory Acoustics team has been investigating acoustic cavitation – the formation and implosion of micro cavities, or bubbles, in a liquid caused by the extreme pressure variations of high intensity ...

Researchers measure cavitation noise in trees

April 17, 2013

(Phys.org) —A team of researchers from Grenoble University in France has found that under experimental conditions, roughly half of the noise created by drying wood is due to cavitation. The team made this discovery while ...

Uncovering liquid foam's bubbly acoustics

October 17, 2013

Liquid foams fascinate toddlers singing in a bubble bath. Physicists, too, have an interest in their acoustical properties. Borrowing from both porous material and foam science, Juliette Pierre from the Paris Diderot University, ...

The physics of beer tapping

November 24, 2013

An old, hilarious if somewhat juvenile party trick involves covertly tapping the top of someone's newly opened beer bottle and then standing back as the suds foam out onto the floor.

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.