Crystal film growth: Nanosheets extend epitaxial growth applications

Dec 17, 2013
Crystal film growth: Nanosheets extend epitaxial growth applications
Schematic illustration of nanosheet structures for Ca2Nb3O10-, Ti0.87O20.52-, and MoO2δ− nanosheets and corresponding crystal planes of SrTiO3.

Molecularly thin two-dimensional crystals can alleviate the lattice matching restrictions of epitaxial crystalline thin film growth, as reported by researchers in Japan.

Epitaxial growth has become increasingly important for growing crystalline thin films with tailored electronic, optical and magnetic properties for technological applications. However, the approach is limited by the high structural similarities required between an underlying substrate and a growing crystal layer on top of it. Takayoshi Sasaki and colleagues at the International Center for Materials Nanoarchitectonics (MANA) and the University of Tokyo in Japan demonstrate how using two-dimensional materials they can extend the versatility of epitaxial growth techniques.

In 1984, Prof. Koma at the University of Tokyo proposed that certain layered materials such as mica or graphite can be easily cleaved to produce surfaces with no dangling bonds that would alleviate the lattice matching requirements for epitaxial growth. Interactions between adatoms on these cleaved materials would be more prominent compared with growth on single-crystal substrates since the van der Waals interactions are weak. However, the variety of suitable cleaved surfaces is limited and handling them can be difficult.

With the increasing attention on two-dimensional over recent years, Takayoshi Sasaki and colleagues decided to look into molecularly thin two-dimensional crystals as possible seed layers to alleviate lattice matching requirements in a manner similar to Koma's van der Waals epitaxy. They deposited nanosheets of either Ca2Nb3O10-, Ti0.87O20.52-, or MoO2δ- as a highly organised monolayers onto amorphous glass. On these different surfaces, they grew different orientations of SrTiO3, an important perovskite for various technological applications. The approach demonstrated the ability to grow different orientations of SrTiO3 with a high level of precision.

The researchers suggest that in the future, it would be of great interest to achieve more sophisticated control of growth geometry using nanosheets with a complex structure. They add, "Such advanced design, hardly realized with present technology, will pave a new way for further development of crystal engineering."

Explore further: Simulations predict flat liquid

More information: "Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: Orientation tuning of SrTiO3 films along three important crystallographic axes of (100), (110) and (111) on glass substrate," Tatsuo Shibata, Hikaru Takano, Yasuo Ebina, Dae Sung Kim, Tadashi C. Ozawa, et al, 2013 J. Mater. Chem. C. DOI: 10.1039/C3TC31787K

Related Stories

New research uncovers path to defect-free thin films

Sep 20, 2012

(Phys.org)—A team led by Oak Ridge National Laboratory's Ho Nyung Lee has discovered a strain relaxation phenomenon in cobaltites that has eluded researchers for decades and may lead to advances in fuel cells, magnetic ...

Growing thin films of germanium

Sep 06, 2013

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible ...

Recommended for you

Artificial muscles get graphene boost

4 hours ago

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.