Crop-infecting virus uses aphids as carrier

Dec 05, 2013
Viruses alter plant biochemistry in order to manipulate visiting aphids into spreading infection.

(Phys.org) —University of Cambridge researchers have shown that viruses use aphids as pawns, discouraging the insects from permanently settling on already-infected crops and using this forced migration to spread infection to healthy vegetation.

Aphids are sap-sucking insects that attack many different types of plants and are major transmitters of crop-infecting viruses. By altering plant biochemistry, crop-infecting viruses cause vegetation to smell and taste unpleasant to visiting . This repels the insects, causing them to move swiftly away to healthier plants, unwittingly transporting and spreading the virus.

This BBSRC-funded research could have significant impact on African agriculture. Working with various agencies, Dr John Carr and colleagues aim to help resource-poor farmers by deploying plants to act as aphid-decoys, drawing the insects away from crucial crops and halting the spread of infection through these farmers' livelihoods.

About this research, Dr Carr said: "The work started almost accidentally when about five years ago a student and I noticed that aphids became sick or died when confined on a virus-infected plant. It's an illustration of how research driven by curiosity can lead to findings that could have a positive impact in the real world - in this case in combating crop-damaging and the they transmit."

The Cambridge team collaborated with researchers at Imperial College, London, using Arabidopsis plants as hosts and monitoring the effect that the crop-infecting cucumber had. It was observed that the virus launched a concerted attack on the plant's immune system whilst concurrently altering its biochemistry; in this way, the weakened Arabidopsis plant was unable to fight off either its attacker or visiting aphids. The aphids, instantly repelled by the smell and taste of the plant, left for healthier plants, but not before landing on the plant and contracting the virus. In this way, the mosaic virus ensured that the spread of the infection would be self-sustaining and highly efficient.

This research focuses on an example of what evolutionary biologist Richard Dawkins has called the 'extended phenotype'. For Dawkins, the word 'phenotype' (the traits of an organism) should not be limited solely to biological processes, but should also be used to describe all effects that a gene has on the organism or environment in which it exists, or other organisms nearby. In this case, it was discovered that a virus influences the infected host, the Arabidopsis plant, and forces the host to change in a way that is beneficial to the parasite.

This revolutionary research has been done as part of a £16-million initiative to use bioscience in the improvement of food security in developing countries. Bioscience is playing an increasingly crucial part in meeting the challenges of feeding an ever-expanding population, projected to increase to 9 billion people by 2050. By developing ways to mitigate pest impact and reduce the spread of parasites, scientists are working to ensure successful harvests, now and in the future.

The study was published in the journal PLOS ONE.

Explore further: International consortium to study plant fertility evolution

Related Stories

Virus pulls bait and switch on insect vectors

Feb 01, 2010

A common plant virus lures aphids to infected plants by making the plants more attractive, but when the insects taste the plant, they quickly leave for tastier, healthier ones. In the process, the insects ...

Novel approach to curing crop diseases tested

Apr 03, 2012

(PhysOrg.com) -- Sugar may be a treat for humans, but for aphids it can be life threatening. A $452,000 grant to Cornell and Boyce Thompson Institute for Plant Research (BTI) will fund research exploiting ...

Freefall -- aphids' survival strategy

Jul 12, 2011

As soon as aphids feeding on a plant sense the heat and humidity in a mammal's breath, they drop to safety before they are inadvertently ingested together with the plant the animal is feeding on. These findings by Moshe Gish ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

5 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

9 hours ago

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

11 hours ago

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

12 hours ago

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.