Cooling inspired by sweat

December 19, 2013 by Christie Taylor
Cooling inspired by sweat
Mario Trujillo creates incredibly detailed simulations of liquid flow to better understand liquid cooling. 

In many of today's electronics, the price we pay for speed comes in the form of heat. As the number of processors on a computer chip increases, so does the amount of heat each chip generates—and there's a greater chance a device will overheat and fail.

With funding from the U.S. Office of Naval Research, Assistant Professor of Mechanical Engineering Mario Trujillo is conducting computer simulations to optimize —a method that uses evaporation to remove —for applications such as radar and high-density electronics.

Liquid cooling is not new; however, recent advances in now allow researchers to study, in detail, how the method works.

Using algorithms derived from natural law, Trujillo is focusing on the interface of different phases of matter— such as the points where liquids mix with gases in a fuel-injected engine—to track each droplet. From the algorithms, powerful computer clusters can create visual simulations that can help create pictures of behavior under not just one set of conditions, but any point or time in an interaction.

As part of his research, Trujillo also is studying ways to improve the simulation methods and measure their accuracy. "What we want to know is, what are the errors, what are the current methods for dealing with them, and how do we improve on them?" Trujillo says.

His goal is to make those metrics relatively easy to implement—yet able to directly measure complex aspects of the computation that specifically target phase change. "The aim is to enable researchers to assess their code so that they can compute these processes with confidence," he says.

Down the road, both his simulation research and resulting benchmarks could give him and other researchers greater insight, for example, into fuel injection behavior or understanding of the process of cooling a nuclear reactor with boiling water.

And simulations also can help make research more efficient. "It is too expensive, both in time and money, to design and run experiments for every imaginable application," says Trujillo.

Explore further: ICECool to crack thermal management barrier, enable breakthrough electronics

Related Stories

Computational sprinting with wax takes heat off smartphones

August 27, 2013

(Phys.org) —What about using wax with a processor as part of a technique to stave off smartphone overheating? Can wax be the answer to the thermal problem confronting smartphones? That is the proposal coming from a University ...

BISON enables complex nuclear fuel modeling, simulation

September 30, 2013

It's rare that a chipped nuclear fuel pellet makes its way into a reactor. But if one of the millions of pencil-sized pellets does have a small defect, it can affect the fuel's performance. How exactly these effects evolve ...

Magnetic nanoparticles could aid heat dissipation

November 20, 2013

Cooling systems generally rely on water pumped through pipes to remove unwanted heat. Now, researchers at MIT and in Australia have found a way of enhancing heat transfer in such systems by using magnetic fields, a method ...

Recommended for you

Power grid forecasting tool reduces costly errors

July 30, 2015

Accurately forecasting future electricity needs is tricky, with sudden weather changes and other variables impacting projections minute by minute. Errors can have grave repercussions, from blackouts to high market costs. ...

Microsoft describes hard-to-mimic authentication gesture

August 1, 2015

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.