Coal yields plenty of graphene quantum dots

Dec 06, 2013
An illustration shows the nanostructure of bituminous coal before separation into graphene quantum dots. The Rice University lab of chemist James Tour has developed a method to extract graphene quantum dots in bulk from several types of coal. Credit: Tour Group/Rice University

The prospect of turning coal into fluorescent particles may sound too good to be true, but the possibility exists, thanks to scientists at Rice University.

The Rice lab of chemist James Tour found simple methods to reduce three kinds of into graphene (GQDs), microscopic discs of atom-thick graphene oxide that could be used in as well as sensing, electronic and photovoltaic applications.

The find was reported today in the journal Nature Communications.

Band gaps determine how a semiconducting material carries an electric current. In quantum dots, band gaps are responsible for their fluorescence and can be tuned by changing the dots' size. The process by Tour and company allows a measure of control over their size, generally from 2 to 20 nanometers, depending on the source of the coal.

There are many ways to make GQDs now, but most are expensive and produce very small quantities, Tour said. Though another Rice lab found a way last year to make GQDs from relatively cheap carbon fiber, coal promises greater quantities of GQDs made even cheaper in one chemical step, he said.

"We wanted to see what's there in coal that might be interesting, so we put it through a very simple oxidation procedure," Tour explained. That involved crushing the coal and bathing it in acid solutions to break the bonds that hold the tiny graphene domains together.

This video is not supported by your browser at this time.

"You can't just take a piece of graphene and easily chop it up this small," he said.

Tour depended on the lab of Rice chemist and co-author Angel Martí to help characterize the product. It turned out different types of coal produced different types of dots. GQDs were derived from bituminous coal, anthracite and coke, a byproduct of oil refining.

The coals were each sonicated in nitric and sulfuric acids and heated for 24 hours. Bituminous coal produced GQDs between 2 and 4 nanometers wide. Coke produced GQDs between 4 and 8 nanometers, and anthracite made stacked structures from 18 to 40 nanometers, with small round layers atop larger, thinner layers. (Just to see what would happen, the researchers treated graphite flakes with the same process and got mostly smaller graphite flakes.)

Tour said the dots are water-soluble, and early tests have shown them to be nontoxic. That offers the promise that GQDs may serve as effective antioxidants, he said.

Medical imaging could also benefit greatly, as the dots show robust performance as fluorescent agents.

"One of the problems with standard probes in fluorescent spectroscopy is that when you load them into a cell and hit them with high-powered lasers, you see them for a fraction of a second to upwards of a few seconds, and that's it," Martí said. "They're still there, but they have been photo-bleached. They don't fluoresce anymore."

Testing in the Martí lab showed GQDs resist bleaching. After hours of excitation, Martí said, the photoluminescent response of the coal-sourced GQDs was barely affected.

That could make them suitable for use in living organisms. "Because they're so stable, they could theoretically make imaging more efficient," he said.

A small change in the size of a quantum dot – as little as a fraction of a nanometer – changes its fluorescent wavelengths by a measurable factor, and that proved true for the coal-sourced GQDs, Martí said.

Low cost will also be a draw, according to Tour. "Graphite is $2,000 a ton for the best there is, from the U.K.," he said. "Cheaper graphite is $800 a ton from China. And coal is $10 to $60 a ton.

"Coal is the cheapest material you can get for producing GQDs, and we found we can get a 20 percent yield. So this discovery can really change the quantum dot industry. It's going to show the world that inside of coal are these very interesting structures that have real value."

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: www.nature.com/ncomms/2013/131… full/ncomms3943.html

Related Stories

NASA image: Fires in China Oct. 18, 2013

Oct 18, 2013

Shuangyashan is a coal mining prefecture-level city located in the eastern part Heilongjiang province, People's Republic of China, bordering Russia's Khabarovsk and Primorsky krais to the east.

Graphene quantum dots: The next big small thing

Jan 12, 2012

A Rice University laboratory has found a way to turn common carbon fiber into graphene quantum dots, tiny specks of matter with properties expected to prove useful in electronic, optical and biomedical applications.

Recommended for you

Researchers make magnetic graphene

6 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

h20dr
not rated yet Dec 06, 2013
'a lump of coal' has new meaning now... maybe I will get one in my stocking this year...
TheGhostofOtto1923
1 / 5 (2) Dec 06, 2013
$20/ton, 20% yield... They will need to find uses for bulk quantities of this stuff. Photoelectric or thermoelectric paints, polymers, construction materials, etc.
Scottingham
not rated yet Dec 09, 2013
Weren't quantum dots used in making OLEDs? Could this possibly reduce the price of OLEDs significantly?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.