Classifications to differentiate readily-biodegradable from long-lasting pesticides

Dec 10, 2013
Credit: Kara-Fotolia.de

In order to improve the evaluation process for the long-term consequences of pesticides, scientists have developed a new detection method and a model that can enable determinations regarding whether and how readily biodegradable the residues of pesticides are. The study, conducted by scientists at the Helmholtz-Centre for Environmental Research (UFZ), the Rhine-Westphalian Technical University Aachen (RWTH) and the Technical University of Denmark has recently appeared in the scientific journal "Critical Reviews in Environmental Science and Technology".

Pesticides have a bad reputation: they harm the environment, have on the diversity of species and pollute the soil. "This is partially correct, but also partially incorrect. Pesticides are important for the efficacy of our modern agriculture methods. And are not necessarily pesticides – differentiation is necessary in this context. Generally speaking, biodegradability is supposed to be the top priority when deploying pesticides", says Prof. Dr. Matthias Kästner, Director of the Department Environmental Biotechnology at the Helmholtz-Centre for Environmental Research – UFZ in Leipzig.

Worldwide, today approximately 5,000 pesticides are utilized as substances for plant protection and for pest control. As varied as their respective effectiveness is, their effects on the environment are equally varied. Some pesticides are quickly biodegraded, while others take longer. And some of them create chemical bonds with components in the soil and form the so-called bound residues. One has always previously assumed that these residues were, per se, toxic. This is why pesticides that form more than 70% bound residues are no longer in compliance today. Kästner: "But what exactly is concealed behind these bound residues, i.e. whether or not they really are toxic or what chemical structures they have hidden, could not yet been evaluated."

By applying the so-called 13C-method, Kästner and his team applied pesticides onto various reference soils and examined them thoroughly regarding their fate. For this purpose, they initially marked the pesticide to be examined with the non-radioactive, heavy carbon isotope 13C – and tracked it in various bio-molecules with the aid of a mass spectrometer after completion of the experiment timeframe. In this manner the scientists were able to determine the residues, the changes in the pesticide, and its breakdown products in the soil.

The most significant result from the study states – there are various groups of bound residues. In the current issue of the technical journal Critical Reviews in Environmental Science and Technology, the UFZ research scientists compile their results and introduce a classification system and a modelling approach for bound residues. As regards Type 1, the pesticide itself or its breakdown products of organic materials are deposited in the soil (humus) or trapped within, and can in principle be released at any time.

If the pesticide has undergone a chemical bond with the humus, bound residues are allocated to the Type 2, which can only be released with difficulty. Residues from both Type 1 and Type 2 are to be categorised as toxicologically relevant. "At this juncture a precise examination must be carried out regarding whether or not approval of a pesticide that forms such residues in the soil is possible and defensible," says Matthias Kästner.

As regards residues of the Type 3, the pesticide was decomposed by bacteria, and the carbon contained therein was transported into the microbial bio-mass. "For these kinds of residues, we can give the "all-clear" signal and confirm that there is no further risk", Kästner states.

Pesticides, from which the bound residues in the soil are allocated to Type 3, could thus be approved without risk in the future. Conversely, pesticides, which heretofore were considered to be risk-free, could possibly be classified as critical using this method. Kästner says "Only when we are capable of differentiating between biodegradable and high-risk pesticide residues we can act accordingly. This is why we hope that the 13C-method will be included in the dossiers of the approval procedure in the future. This is what we suggested to the German Federal Environmental Agency as well."

The initial findings from the UFZ study have already been accepted into the assessment processes of the officials involved in the approval procedure. Thus, for the residues of the approved pesticides 2.4 dichlorphenoxyacetic acid (2.4-D for short) and 2 methyl 4 chlorphenoxyacetic acid (MCPA for short), they were able to give the all-clear. "In order to better control the deployment of pesticides and their environmental consequences, we still have a lot of work to do", says Kästner. "The problems that we had with DDT (dichlorodiphenyltrichloroethane) and atrazine must not be repeated. Therefore, it is very important to understand what actually happens with pesticides after application."

Explore further: Investigating the link between Parkinson's and pesticides

More information: Matthias Kästner, Karolina M. Nowak, Anja Miltner, Stefan Trapp, Andreas Schäffer (2013): Classification and modelling of non-extractable residue (NER) formation of xenobiotics in soil – a synthesis. Critical Reviews in Environmental Science and Technology. DOI: 10.1080/10643389.2013.828270
dx.doi.org/10.1080/10643389.2013.828270

add to favorites email to friend print save as pdf

Related Stories

Study: Pesticides found in wine

Apr 04, 2008

A European environmental group said pesticides used on grapes were found in 35 of the 40 bottles of wine they tested.

Getting plants to rid themselves of pesticide residues

Sep 09, 2009

Scientists in China are reporting the "intriguing" discovery that a natural plant hormone, applied to crops, can help plants eliminate residues of certain pesticides. The study is scheduled for the Sept. 23 ...

Investigating the link between Parkinson's and pesticides

Dec 04, 2013

In a seemingly simple experiment, a scientist exposes rats to a certain pesticide over several days, and the rodents start showing symptoms remarkably similar to those seen in Parkinson's patients. But the scientific search ...

Study shows legacy of pesticides difficult to avoid

Jul 29, 2013

A University of Otago study shows that the tell-tale legacy in rural South Island areas of pesticides banned many years ago remains, regardless of the type of sheep and beef farming now taking place on the land.

Recommended for you

Seeds keep vital much longer when stored without oxygen

6 hours ago

If seed breeding companies, gene banks and the Svalbard Global Seed Vault on Spitsbergen should store plant seeds under oxygen-poor conditions, it would be possible to store them for much longer while still ...

Native species may be hindering fox control efforts

6 hours ago

Native species interfering with ground distributed baits used to control red foxes in south west Western Australia may mean the baits are not available to the target species, a Murdoch University study has ...

Giant anteaters kill two hunters in Brazil

Jul 26, 2014

Giant anteaters in Brazil have killed two hunters in separate incidents, raising concerns about the animals' loss of habitat and the growing risk of dangerous encounters with people, researchers said.

User comments : 0