Citrus fruit inspires a new energy-absorbing metal structure

Dec 03, 2013
Citrus fruit inspires a new energy-absorbing metal structure

It has been said that nature provides us with everything that we need. A new study appearing in Springer's Journal of Materials Science may lend credence to that claim. Researchers from the Foundry Institute of the RWTH Aachen University in Germany, and Plant Biomechanics Group of the University of Freiburg, Germany, have developed an aluminum hybrid that could be used to optimize technical components and safety materials. And the inspiration came from an unexpected source – the peel of the pomelo fruit (Citrus maxima).

Pomelo fruits have a mass of one to two kilograms, but are able to withstand impact forces resulting from falls of over 10 meters. The fruit's impact resistance is mainly due to the hierarchical structuring of the peel, which is made up of a graded, fiber-reinforced foam. The new aluminum hybrid is the product of a bio-inspired approach, combining metals with different mechanical properties that reflect these naturally occurring structures and mimic the strength of the pomelo peel.

To make use of the pomelo's ability to absorb impact energy, the "block mold casting" process was modified, and the pomelo foam's strut composition was transferred to a metal hybrid. This hybrid consists of highly ductile pure aluminum in the center and a high strength aluminum-silicon alloy in the outer shell.

The composite exhibits a much higher tensile strength (the force needed to break something apart) than pure aluminum, and a much higher ductility (the ability to withstand permanent changes in shape) than the aluminum-silicon alloy. This new combination of materials exhibits a novel behavior under load, and the authors suggest safety materials as the best and most obvious use for the new bio-inspired composite material they've created.

"The demands of designers and consumers on forthcoming components will be increased in the future," said Sebastian F. Fischer of RWTH Aachen University, lead author of the study. "The main reason for this is the need for energy-saving, light-weight products, especially in the automotive industry. These challenges can be met by enhanced material properties or composites. And while the development of new materials is increasingly difficult, the joining of different with different properties holds a lot of promise."

Explore further: New aluminum alloy stores hydrogen

More information: Fischer, S.F. et al (2013). Production and properties of a precision-cast bio-inspired composite. Journal of Materials Science. DOI: 10.1007/s10853-013-7878-4

Related Stories

New aluminum alloy stores hydrogen

Nov 05, 2013

We use aluminum to make planes lightweight, store sodas in recyclable containers, keep the walls of our homes energy efficient and ensure that the Thanksgiving turkey is cooked to perfection. Now, thanks ...

Extrusion for greener aluminum production

Jul 26, 2013

Aluminum recycling has become a successful business since its inception a century ago. Nearly a third of the aluminum produced in the United States is made from aluminum scraps that have been recycled in ...

Playing with glass safely—and making it stronger

Jul 18, 2013

(Phys.org) —Researchers at Yale have developed a way to alter the microanatomy of glass and measure how the changes affect the material's overall character—offering new possibilities for tailoring glass ...

Ultra-high-strength metamaterial developed using graphene

Aug 26, 2013

New metamaterial has been developed exhibiting hundreds of times greater strength than pure metals. Researchers from KAIST have developed a composite nanomaterial. The nanomaterial consists of graphene inserted in copper ...

Recommended for you

Proteins: New class of materials discovered

Aug 22, 2014

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

Aug 21, 2014

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

Aug 21, 2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0