Choreographed stages of Salmonella infection revealed

December 11, 2013
This is Professor Jay Hinton, University of Liverpool. Credit: University of Liverpool

Scientists have used a new method to map the response of every salmonella gene to conditions in the human body, providing new insight into how the bacteria triggers infection.

In a world first, the scientists exposed salmonella to 22 lab environments that mimic conditions that the bacterium finds when it enters the human body and discovered the effects of these conditions on individual genes in the bacteria.

After people eat salmonella, the microbes enter the stomach, and intestine, and then invade human cells. The researchers mimicked these changing environments by altering levels of acidity, oxygen and in lab experiments.

The researchers from the University of Liverpool and Trinity College Dublin examined the effect of each of these environments on the 4,742 genes in the bacterium and determined which conditions 'turned on' each gene. The results paint an accurate picture of the 'choreography' of gene expression that is required when this dangerous bacterium infects people.

Soon after entering the body, exposure to oxygen-limited conditions causes the activation of genes which enable the bacteria to stick a syringe-like structure into the gut wall to cause diarrhoea. Once inside the lining to the gut, immune defence chemicals prompt salmonella to be engulfed by macrophages – the cells that normally kill other bacteria. Unusually, the bacteria have evolved to thrive inside these protective cells, by switching on genes that neutralise the lethal abilities of macrophages.

Salmonella can survive in stressful environments and even hijack the body's own defences. In people with weakened immune systems, such as the young, old or those with HIV, infection by salmonella can prove fatal, with an estimated 160,000 deaths each year across the world.

Doctors are reluctant to use antibiotics to treat all but the most extreme cases of salmonellosis in order to avoid creating resistant strains of the bacterium. Instead, the usual advice is for people to rest and drink fluids. Ideally a vaccine would be developed to eliminate the need for antibiotics entirely.

The results of the new study, which reveals the specific used during and growth, and the triggers which activate them, have implications for the future design of drugs and vaccines which could be specifically targeted against the strategies used by salmonella to become active inside the human body.

The method used by the scientists is transferrable to all bacteria and, given time, many more diseases could be studied using the same approach.

Professor Jay Hinton from the University of Liverpool's Institute of Integrative Biology led the study. He said: "These findings show that salmonella goes through a complex choreography of different stages while infecting different parts of our bodies.

"We've started using this approach with as it's a well understood organism with a significant global impact, and we hope that the same technique will now be used to gather more information from a variety of other dangerous ."

Explore further: Salmonella in garden birds responsive to antibiotics

More information: All of the data sets have been uploaded to a free-to-use website:

Related Stories

Salmonella in garden birds responsive to antibiotics

June 2, 2008

Scientists at the University of Liverpool have found that Salmonella bacteria found in garden birds are sensitive to antibiotics, suggesting that the infection is unlike the bacteria found in livestock and humans.

Internal cellular sensors make Salmonella dangerous: study

June 15, 2012

( -- Salmonella becomes dangerously virulent only when molecular sensors within the organism sense changes in the environment, a team of researchers from the Yale School of Medicine and the Yale Microbial Diversity ...

Contact killing of Salmonella by human faecal bacteria

April 23, 2013

Our gut is home to trillions of bacteria, numbering more than the cells in the rest of our body, and these bacteria help us to digest our food, absorb nutrients and strengthen our immune system. This complex bacterial ecosystem, ...

Recommended for you

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.

Threat posed by 'pollen thief' bees uncovered

October 9, 2015

A new University of Stirling study has uncovered the secrets of 'pollen thief' bees - which take pollen from flowers but fail to act as effective pollinators - and the threat they pose to certain plant species.

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.