New catalyst for fuel cells a potential substitute for platinum

Dec 16, 2013
This scanning tunnelling microscopy image shows how iron atoms and organic molecules become ordered in patterns on a gold substrate. Credit: Grumelli et al., Nat. Comm. 2013

Fuel cells represent an important component of the energy transition, as they supply electrical energy without first having to create heat and steam from fossil fuels. Instead, they create the energy directly from a reaction of hydrogen and oxygen to form water. For that reason, they can create energy more efficiently than coal-fired or gas-fired power plants. Today's fuel cells require, however, costly platinum as a catalyst for this reaction, which restricts their more widespread use. A team at the Max Planck Institute for Solid State Research in Stuttgart has been inspired by nature to develop an alternative catalyst. It consists of organic molecules as well as iron or manganese on a metallic substrate. These materials are less costly and more easily available than platinum.

Humans and animals obtain from the same as fuel cells: they breathe in oxygen and bind hydrogen with it in their cells to form water. In this chemical conversion, energy is released, which the organism uses to live. Therefore, the idea to search in nature for a catalyst as a substitute for expensive platinum is logical. This noble metal drives a specific partial reaction during the energy conversion in a : the so-called reduction of oxygen. During this reaction, oxygen picks up either two or four electrons, depending on whether it reacts directly with hydrogen or via an intermediate hydrogen peroxide molecule to form water.

Natural oxygen-reducing enzymes contain metals like iron and manganese, which are easily obtained through nutritional sources. Organic molecules associated with this enzyme hold on tightly to the atoms of these metals, so that the oxygen can dock there and be reduced. Klaus Kern and his staff member Doris Grumelli from the Max Planck Institute for Solid State Research have now evaporated iron and manganese atoms together with onto a gold substrate. In doing this, they established that the organic molecules and the become ordered in patterns that strongly resemble the functional centres of enzymes. Networks formed in which individual iron or manganese atoms are surrounded by several organic molecules, like the intersecting points in a lattice fence.

The iron atoms (blue) and the organic molecules (green, black) form a lattice pattern on the gold substrate. Credit: Grumelli et al., Nat. Comm. 2013

In order to be able to test how the catalyst functions in the networks, the researchers had to develop a transport system with which they can move the samples from vacuum into liquids. This is because the new surface structures were formed under a very high vacuum, while the tests took place outside the vacuum chamber in an electrochemical cell. It turned out that the catalytic activity depended of the kind of metallic centre, while, on the other hand, the stability of the structure depended on the type of organic molecules that form the network. Iron atoms led to a two-level reaction via the intermediate hydrogen peroxide molecule, while produced a direct reaction of oxygen to water.

The latter reaction would be interest for fuel cells, as experts expect higher efficiency in converting the chemical energy to through the direct reaction. "However, the other variant could also have applications," says Grumelli, "even serving to modulate or interrupt the reaction." This can play a role in biosensors, for example. In any event, the Group has succeeded in making a new class of nanocatalysts that are cost-effective to manufacture, and whose raw materials are plentiful. Doris Grumelli is already working on a new variant of these kinds of structures: with the help of special organic molecules which each contain a metal atom, and the use of additional metal atoms, she hopes to create a surface structure that simultaneously contains two types of metal atoms. "Such structures could serve as models for biological research," says the scientist.

Explore further: Splitting water into hydrogen and oxygen using light, nanoparticles

More information: Doris Grumelli, Benjamin Wurster, Sebastian Stepanow and Klaus Kern. "Bio-inspired nanocatalysts for the oxygen reduction reaction." Nature Communications, 5 December 2013 DOI: 10.1038/ncomms3904

Related Stories

Researchers develop superior fuel cell material

Aug 24, 2012

Using a mixture of gold, copper and platinum nanoparticles, IBN researchers have developed a more powerful and longer lasting fuel cell material. This breakthrough was published recently in leading journal, ...

Recommended for you

Scientists develop pioneering new spray-on solar cells

19 hours ago

(Phys.org) —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

Free pores for molecule transport

Jul 31, 2014

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

shavera
not rated yet Dec 16, 2013
are you sure you didn't just take an out-of-focus picture of fabric? ;-) Neat though.