Carbon dioxide study adds to picture of global carbon cycle

Dec 24, 2013
X-ray scans for CO2 under pressure, with figure (a) for oxygen and figure (b) for carbon.

(Phys.org) —One of the most widely known compounds on Earth is carbon dioxide, or CO2. We learn as children that CO2 is a key component of photosynthesis, the process by which plants, algae, and bacteria convert light into energy. This reaction is part of the global carbon cycle, the exchange of carbon between Earth's land, oceans, and atmosphere – and is key to our planet's ability to support life.

But despite the fundamental importance of CO2, scientists are still learning some basic information about it, such as the details of its behavior under extreme pressures like those found deep within Earth. These details are vital to understanding the , as well as the evolution and dynamics of our planet's interior.

Recently, the results of an x-ray study to investigate the structure of CO2 under high pressures, performed by an international research team led by Sean R. Shieh of the University of Western Ontario and Ignace Jarrige and Yong Cai from Brookhaven National Laboratory's Photon Sciences Directorate, were published in the November 12 edition of the Proceedings of the National Academy of Sciences. The team reports that CO2 transitions into an "amorphous polymorph," a solid phase of matter without long-range order, at a much lower pressure than previously thought.

"This is the first evidence of the formation of amorphous CO2 at such low pressures at room temperature," said Ignace Jarrige. "Because the amorphous phase is a precursor to the superhard crystalline phases that form at higher pressures, understanding it is essential to creating a full picture of the ."

While previous studies report a transition near 50 gigapascals (GPa), the team observed that the transition to the amorphous phase takes place at a pressure of 37 GPa (corresponding to about 560 miles below the Earth's surface), which was evidenced by the change from double carbon-oxygen bonds (the atoms share two pairs of electrons) into single bonds (they share one pair).

Additionally, prior studies of CO2 have left unresolved questions about the "coordination number" of the carbon atom – the number of atoms it is bonded to. Coordination number tells scientists about a molecule's electronic structure and is often used when describing materials with either short- or long-range crystal structures. In solids, a higher is an indicator of a more tightly packed, efficient arrangement of atoms.

Several coordination numbers have been proposed for carbon in amorphous CO2, all stemming from infrared studies that are not ideal for probing the electronic structure of amorphous solids. The team resolved the issue by taking x-ray scattering data on a CO2 sample as they increased the pressure up to 63 GPa. They determined that the coordination is fourfold, meaning each carbon atom has four nearest atomic neighbors. Further, the data show that some carbon and oxygen actually take the form of two short-lived species, CO and CO3, which disappear above 63 GPa.

"Our unraveling of the coordination of carbon in compressed CO2 at pressures all the way up to 63 GPa is critical to the understanding of the cycle of carbon when it reaches the far depths of Earth's interior and forms superhard phases," said Jarrige.

At Brookhaven Lab's new synchrotron facility, NSLS-II, now under construction and set to begin operating in 2015, the team is planning further studies at the Inelastic X-ray Scattering (IXS) beamline, one of seven initial beamlines being constructed. Cai, the NSLS-II IXS Beamline Group Leader, is in charge of the development, operation, and management of IXS.

"IXS will offer unprecedented energy resolution for measurements of atomic and molecular vibrations at the nanometer length scale," said Cai. "These measurements will undoubtedly contribute to the understanding of the nature of Earth's deep , and will also be crucial to understanding the polymorphic transitions of materials under high pressure in general."

Explore further: Sorbents capturing CO2 will make power plants cleaner

More information: Sean R. Shieh, Ignace Jarrige, Min Wu, Nozomu Hiraoka, John S. Tse, Zhongying Mi, Linada Kaci, Jian-Zhong Jiang, and Yong Q. Cai. "Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition." PNAS 2013 110 (46) 18402-18406; October 28, 2013, DOI: 10.1073/pnas.1305116110

Related Stories

Sorbents capturing CO2 will make power plants cleaner

Oct 18, 2013

When coal is used to generate electricity in power plants, carbon from the coal bonds with oxygen from air to make carbon dioxide (CO2). Due to concerns about how CO2 impacts global climate, scientists at ...

The surprising ooze factor of glass

May 01, 2013

(Phys.org) —Reach for a tall glass of iced tea. Don't drink. Look at the glass instead. The glass is an amorphous solid, consisting of molecules jumbled in disarray. It's the complete opposite of the ice ...

Peering through the global carbon cycle

Aug 21, 2013

The oceans are one of the sink absorbing carbon dioxide derived from human activity. Yet fully quantifying the ocean's carbon uptake under a changing climate remains challenging.

Recommended for you

Six Nepalese dead, six missing in Everest avalanche

37 minutes ago

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

Clean air: Fewer sources for self-cleaning

14 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

14 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

21 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

21 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

Six Nepalese dead, six missing in Everest avalanche

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...