Asteroid hunter spacecraft returns first images after reactivation

Dec 19, 2013
NASA's NEOWISE spacecraft opened its "eyes" after more than two years of slumber to see the starry sky. Image credit: NASA/JPL-Caltech

(Phys.org) —NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), a spacecraft that made the most comprehensive survey to date of asteroids and comets, has returned its first set of test images in preparation for a renewed mission.

NEOWISE discovered more than 34,000 asteroids and characterized 158,000 throughout the solar system during its prime mission in 2010 and early 2011. It was reactivated in September following 31 months in hibernation, to assist NASA's efforts to identify the population of potentially hazardous near-Earth objects (NEOs). NEOWISE also can assist in characterizing previously detected asteroids that could be considered potential targets for future exploration missions.

"NEOWISE not only gives us a better understanding of the asteroids and comets we study directly, but it will help us refine our concepts and mission operation plans for future, space-based near-Earth object cataloging missions," said Amy Mainzer, principal investigator for NEOWISE at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "The spacecraft is in excellent health, and the new images look just as good as they were before hibernation. Over the next weeks and months we will be gearing up our ground-based data processing and expect to get back into the asteroid hunting business, and acquire our first previously undiscovered space rock, in the next few months."

Some of the deep-space images taken by the spacecraft include a previously detected asteroid named (872) Holda. With a diameter of 26 miles (42 kilometers), this asteroid orbits the sun between Mars and Jupiter in a region astronomers call the asteroid belt. The images tell researchers the quality of the spacecraft's observations is the same as during its primary mission.

This is one of the first images captured by the revived NEOWISE mission, after more than two years of hibernation. Credit: NASA/JPL-Caltech

The spacecraft uses a 16-inch (40-centimeter) telescope and infrared cameras to seek out and discover unknown NEOs and characterize their size, albedo or reflectivity, and thermal properties. Asteroids reflect, but do not emit visible light, so data collected with optical telescopes using visible light can be deceiving.

Infrared sensors, similar to the cameras on NEOWISE, are a powerful tool for discovering, cataloging and understanding the asteroid population. Some of the objects about which NEOWISE will be collecting data could become candidates for the agency's announced asteroid initiative.

NASA's initiative will be the first mission to identify, capture and relocate an asteroid. It represents an unprecedented technological feat that will lead to new scientific discoveries and technological capabilities that will help protect our home planet. The asteroid initiative brings together the best of NASA's science, technology and human exploration efforts to achieve President Obama's goal of sending humans to an by 2025.

"It is important that we accumulate as much of this type of data as possible while the spacecraft remains a viable asset," said Lindley Johnson, NASA's NEOWISE program executive in Washington. "NEOWISE is an important element to enhance our ability to support the initiative."

NEOWISE began as WISE. The prime mission, which was launched in December 2009, was to scan the entire celestial sky in infrared light. WISE captured more than 2.7 million images in multiple infrared wavelengths and cataloged more than 747 million objects in space, ranging from galaxies faraway to asteroids and comets much closer to Earth. NASA turned off most of WISE's electronics when it completed its primary mission in February 2011.

Upon reactivation, the was renamed NEOWISE, with the goal of discovering and characterizing asteroids and comets whose orbits approach within 28 million miles (45 million kilometers) from Earth's path around the sun.

Explore further: NASA spacecraft reactivated to hunt for asteroids: Probe will assist agency in search for candidates to explore

Related Stories

Image: March of asteroids across dying star

Dec 13, 2013

(Phys.org) —In an unexpected juxtaposition of cosmic objects that are actually quite far from each other, a newly released image from NASA's Wide-Field Infrared Survey Explorer (WISE) shows a dying star, ...

NASA's NEOWISE completes scan for asteroids and comets

Feb 01, 2011

(PhysOrg.com) -- NASA's NEOWISE mission has completed its survey of small bodies, asteroids and comets, in our solar system. The mission's discoveries of previously unknown objects include 20 comets, more ...

WISE mission finds lost asteroid family members

May 30, 2013

(Phys.org) —Data from NASA's Wide-field Infrared Survey Explorer (WISE) have led to a new and improved family tree for asteroids in the main belt between Mars and Jupiter.

NASA's Wise finds mysterious centaurs may be comets

Jul 25, 2013

The true identity of centaurs, the small celestial bodies orbiting the sun between Jupiter and Neptune, is one of the enduring mysteries of astrophysics. Are they asteroids or comets? A new study of observations ...

Recommended for you

New launch date set for ISS delivery vessel

14 hours ago

A robot ship will be launched from Kourou, French Guiana, after a five-day delay on July 29 to deliver provisions to the International Space Station, space transport firm Arianespace said Tuesday.

The heart of an astronaut, five years on

15 hours ago

The heart of an astronaut is a much-studied thing. Scientists have analyzed its blood flow, rhythms, atrophy and, through journal studies, even matters of the heart. But for the first time, researchers are ...

Image: Kaleidoscopic view of Mars

21 hours ago

Astrophotographer Leo Aerts from Belgium took advantage of the recent opposition of Mars and captured the Red Planet both "coming and going" in this montage of images taken from October 2013 to June of 2014. ...

User comments : 0