Antarctic neutrino-hunting project IceCube named Breakthrough of the Year by Physics World

December 13, 2013

International high-energy physics research project IceCube has been named the 2013 Breakthrough of the Year by British magazine Physics World. The Antarctic observatory has been selected for making the first observation of cosmic neutrinos, but also for overcoming the many challenges of creating and operating a colossal detector deep under the ice at the South Pole.

"The ability to detect cosmic is a remarkable achievement that gives astronomers a completely new way of studying the cosmos," says Hamish Johnston, editor of "The judges of the 2013 award were also impressed with the IceCube collaboration's ability to build and operate a huge and extremely sensitive detector in the most remote and inhospitable place on Earth."

Essentially a telescope in the ground, the IceCube Neutrino Observatory was completed in December 2010, after seven years of construction at the South Pole. But the idea of a huge detector buried in the ice was conceived a long time ago And in the 1990s, the AMANDA detector was built as a proof of concept for IceCube. By January 2005, the first sensors of IceCube had already reached 2,450 metres below the Antarctic ice sheet, and a few weeks ago the IceCube Collaboration published the first evidence for a very high-energy astrophysical neutrino flux in Science.

"This is the beginning of a new era for astronomy," says University of Toronto physicist and IceCube collaborator Ken Clark. "This result opens up the ability to use neutrinos to explore our universe. These really are the ideal messenger particles since they can travel vast distances without stopping or slowing."

IceCube principal investigator is Francis Halzen, the Hilldale and Gregory Breit Professor of Physics at the University of Wisconsin-Madison. As he envisioned, the Antarctic ice became the perfect medium to search for very high-energy neutrinos that, after travelling through the universe during millions—even billions—of years, haphazardly interact with the nucleus of a molecule of ice.

"I did not imagine that the science would be as exciting as building this detector," says Halzen. "Challenges were many, from deciphering the optical properties of ice that we have never seen, to drilling a hole to 2.5 kilometres in two days, and then repeating 86 times. The success of IceCube builds on the efforts of hundreds of collaborators around the world—from the design, the deployment in a harsh environment and the AMANDA prototype, to data harvesting and physics analysis."

IceCube is comprised of 5,160 digital optical modules suspended along 86 cables embedded in a cubic kilometre of ice beneath the South Pole. It detects neutrinos through the tiny flashes of blue light, called Cherenkov light, that are produced when neutrinos interact in the ice.

Explore further: IceCube building goals exceeded at South Pole

More information: The Hangout can also be viewed live on the Physics World YouTube channel at

Related Stories

IceCube neutrino observatory nears completion

August 31, 2010

In December 2010, IceCube -- the world's first kilometer-scale neutrino observatory, which is located beneath the Antarctic ice -- will finally be completed after two decades of planning. In an article in the AIP's Review ...

Neutrinos put cosmic ray theory on ice

April 20, 2012

( -- A telescope buried beneath the South Pole has failed to find any neutrinos accompanying exploding fireballs in space, undermining a leading theory of how cosmic rays are born.

Searching for cosmic accelerators via IceCube

November 21, 2013

In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN. Scientists don't know what these cosmic accelerators are or where they are located, but new results ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 13, 2013
Good work. Now let's map the neutrino emissions from the Sun.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.