Alzheimer substance may be the nanomaterial of tomorrow

December 16, 2013
Piotr Hanczyc created artificial amyloids in the laboratory. Credit: Mats Tiborn

Amyloid protein causes diseases like Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease. But amyloid also carries unique characteristics that may lead to the development of new composite materials for the nano processors and data storage of tomorrow, and even make objects invisible.

Researchers from Chalmers University of Technology recently unveiled an unexpected discovery about amyloid in an article published in the Nature Photonics journal. Amyloids are misfolded variants of proteins that occur naturally in the body. The researchers have now shown that the misfolded variants react to multiphoton irradiation, a type of laser effect, whereas the healthy proteins do not.

The discovery could be useful in a variety of fields. Not only can it lead to new methods to detect and treat the brain diseases that amyloid causes, amyloid may also be used as a building block for future nanomaterials.

"It is possible to create these protein aggregates artificially in a laboratory", says Piotr Hanczyc, one of the researchers who made the discovery. "By combining them with other molecules, one could create with unique characteristics."

The amyloid aggregates are as hard and rigid as steel. The difference is that steel is much heavier and has defined material properties, whereas amyloids can be tuned for specific purposes. By attaching a material's molecules to the dense amyloid, its characteristics change.

"This was already known, but what has not been known is that the amyloids react to multiphoton irradiation," says Piotr Hanczyc. "This opens up new possibilities to also change the nature of the material attached to the amyloids."

The amyloids are shaped like discs, densely piled upon each other. When a material gets merged with these discs, its molecules end up so densely and regularly placed that they can communicate and exchange information. This means completely new possibilities to change a material's characteristics.

Piotr Hanczyc now sees opportunities for collaboration with the material science researchers at Chalmers, for example on .

And although it may still be science fiction, he also believes that one day scientists may use the of amyloid fibrils in research on invisible meta materials.

"An object's ability to reflect light could be altered so that what's behind it gets reflected instead of the object itself, in principle changing the index of light refraction. Kind of like when light hits the surface of water."

Explore further: Destroying amyloid proteins with lasers

More information: "Multiphoton absorption in amyloid protein fibres." Piotr Hanczyc, Marek Samoc, Bengt Norden.
Nature Photonics 7, 969–972 (2013). DOI: 10.1038/nphoton.2013.282

Related Stories

Destroying amyloid proteins with lasers

January 7, 2009

Researchers have found that a technique used to visualize amyloid fibers in the laboratory might have the potential to destroy them in the clinic. The technique involves zapping the fluorescently-tagged fibers with a laser, ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.