Aging cells unravel their DNA

Dec 16, 2013
Satellite DNA (green) is compact in a normal proliferative cell (left) but distended in a nonproliferative senescent cell (right). A study in The Journal of Cell Biology identifies a common marker of senescence that could have important implications for aging and cancer. Credit: Swanson et al., 2013

Senescent cells, which are metabolically active but no longer capable of dividing, contribute to aging, and senescence is a key mechanism for preventing the spread of cancer cells. A study in The Journal of Cell Biology identifies a common, early marker of senescent cells that could have important implications for tumor suppression and aging-related diseases like Progeria.

Senescent cells permanently exit the cell cycle, a process that can be triggered by the cellular changes associated with aging or by other stresses such as the expression of cancer-promoting oncogenes. Despite the importance of senescence for both aging and , however, researchers have failed to identify any distinguishing features that are common to all types of .

Researchers from UMass Medical School discovered that the satellite DNA found at human and mouse centromeres—the points where chromosomes connect to microtubules during cell division—unraveled from its normal compact state as cells entered senescence. This unraveling—which the researchers termed senescence-associated distension of satellites, or SADS—occurred regardless of how senescence was induced and appeared to occur early in the process of cell cycle exit. Strikingly, cells from Progeria patients formed SADS as they exited the , suggesting that these prematurely arrested cells follow the same senescence pathway as normally aging cells.

This video is not supported by your browser at this time.
Satellite DNA (green and red) is compact in a normal proliferative cell (left) but distended in a nonproliferative senescent cell (right). A study in The Journal of Cell Biology identifies a common, early marker of senescence that may have important implications for aging and cancer. Credit: Swanson et al., 2013

The extensive unfolding of structures critical for cell division could thus prove key to inhibiting cell proliferation, in the context of both aging and limiting the proliferation of tumor cells.

Explore further: Tipping the balance between senescence and proliferation

More information: Swanson, E.C., et al. 2013. J. Cell Biol. DOI: 10.1083/jcb.201306073

add to favorites email to friend print save as pdf

Related Stories

Tipping the balance between senescence and proliferation

Nov 15, 2013

An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Study discovers that stem cell senescence drives aging

Apr 18, 2013

Declining levels of the protein BubR1 occur when both people and animals age, and contribute to cell senescence or deterioration, weight loss, muscle wasting and cataracts. Mayo Clinic researchers have shown that adult progenitor ...

Cell senescence does not stop tumor growth

Jan 19, 2012

Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Recommended for you

What happens when good genes get lost?

23 hours ago

Scientifically speaking, there is no bad DNA, though we like to blame it for unruly hair, klutziness or poor gardening skills. There is, however, junk DNA.

Plants prepackage beneficial microbes in their seeds

Sep 29, 2014

Plants have a symbiotic relationship with certain bacteria. These 'commensal' bacteria help the pants extract nutrients and defend against invaders – an important step in preventing pathogens from contaminating fruits and ...

User comments : 0