World’s first commercial nanostructured bulk metal

Nov 11, 2013
World’s first commercial nanostructured bulk metal
Large-scale manufacture of nanostructured steel shafts. Credit: Rolls Royce Plc.

When we think of structural materials, we usually imagine something big, strong and bulky, like steel beams in bridges and buildings, and while we are becoming familiar with composites reinforced with carbon nanotubes and nanofibers, it is yet hard to believe that the structure of bulk homogenous metals can be controlled at the nanoscale with commercial-scale production

In a paper published in the Science and Technology of Advanced Materials, Bhadeshia introduces the world's first bulk nanostructured metal in commercial production. The nanostructure-controlled high-strength bainitic steel, where the thickness of bainitic ferrite platelets is controlled between 20 and 50 nm is shown in the figures below.

The review paper explains why nanostructure plays an important role in strengthening materials, and the conditions required to design and develop such "nanostructured" materials. In particular, the biggest challenge is to keep the production cost as low as that of bottled water.

So, what magic is needed to produce low-cost nanostructured bulk steel? The answer is simple – keep the bulk at 200 °C for 10 days, which will lead to the formation of plate-like bainitic structure. One deficiency of the material is that it is yet difficult to weld, but the author lays out possible solutions to overcome this.

Explore further: Made-to-order materials: Engineers focus on the nano to create strong, lightweight materials

More information: "The first bulk nanostructured metal," Science and Technology of Advanced Materials, Vol. 14 (2013) p. 014202. Published in March 11, 2013 at iopscience.iop.org/1468-6996/14/1/014202

add to favorites email to friend print save as pdf

Related Stories

Microstructural improvements enhance material properties

Sep 14, 2012

Exquisite buildings like the Eiffel Tower were made possible because of advances in structural engineering design methods. Truss structures, like the Eiffel Tower, are highly efficient; they can carry the ...

Federal grant invests in nanostructured 'super' materials

Aug 06, 2010

Backed by a $1.2 million federal grant, the University of Wisconsin-Milwaukee (UWM) has launched a Center for Advanced Materials Manufacturing (CAMM) that will support the transfer of UWM research in bulk nanostructured materials ...

Probing the surface of pyrite

Oct 01, 2013

Pyrite—perhaps better known as "fool's gold" for its yellowish metallic appearance—is a common, naturally occurring mineral. It holds promise as a high-tech material, with potential uses in solar cells, ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

23 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NikFromNYC
1 / 5 (2) Nov 19, 2013
Are terribly old alloy annealing routines now "nanotech" too? Is talcum powder? Or soot?

How is it that C60 was in soot all this time, never noticed?

How is it that mere Scotch tape was all that was needed to pull graphene off of graphite?

What else are laboratory careerists failing to notice?

Oh, most everything, I assure you, on purpose, for lack of pluck and moxie, for the unexpected is too humbling to poofy puffed up propellor head geeks.

-=NikFromNYC=-, Ph.D. in making stuff (Columbia/Harvard)

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...