Viruses are as simple as they are "smart"

November 25, 2013
Ordered arrangement of the model DNA packaged in the viral capsid. Credit: SISSA)

Viruses are as simple as they are "smart": too elementary to be able to reproduce by themselves, they exploit the reproductive "machinery" of cells, by inserting pieces of their own DNA so that it is transcribed by the host cell. To do this, they first have to inject their own genetic material into the cells they infect. An international team of researchers, including Cristian Micheletti from SISSA (the International School for Advanced Studies in Trieste), has studied how this occurs and how long it takes for this process to be completed.

Micheletti and colleagues constructed a computer model of viral DNA and then simulated the release of from the viral capsid into the nucleus. Far from being a fluid process, this ejection is subject to frictional forces that depend on the conformation of the DNA strand. "Fluidity of the process depends on how and how tightly the viral DNA is entangled", explains Micheletti. "The more topologically ordered is the double strand of the genome, the faster it is ejected from the virus. The situation is somewhat similar to the behaviour of an anchor line that has been correctly coiled: when the anchor is thrown overboard, the line uncoils neatly without stops or jerks due to tangles."

DNA has an intrinsic characteristic that makes its pattern of spontaneous arrangement very singular. Because it has two strands, DNA has a tendency to form highly ordered coils, just like anchor lines or thread spools. This isn't the case with generic polymers, which form complex and chaotic tangles. The simulations by Micheletti and colleagues compared the behaviour of a model strand of DNA and a simple strand of generic polymer. "In 95% of cases the model DNA slid through the exit pore of the virus much faster than the simple polymer, as a result of the greater spontaneous order of its conformation", comments Micheletti. "The simple strands may be even ten times slower than the DNA strands. Another interesting thing is that, although much more slowly, the simple strands in our observations always succeeded in leaving the virus completely. By contrast, in a small minority of cases, the DNA remained totally blocked, and this too is related to its tendency to form a spool that may sometimes present such complex torus knots – i.e., doughnut-like – to completely block ejection from the virus".

The process timescales observed by Micheletti and colleagues are perfectly consistent with empirical observations, "including all cases of complete DNA stalling that have been reported, though not explained, in some experiments", concludes Micheletti. "Our study, which estimated the time it takes viral DNA to leave the capsid in relation to its length and degree of packing could provide the starting point for designing artificial viral vectors".

The study has just been published in the Proceedings of the National Academy of Sciences (PNAS), and the authors include, in addition to Micheletti, Davide Marenduzzo from the University of Edinburgh, Enzo Orlandini from the University of Padua, and De Witt Sumners from the Florida State University.

Explore further: Pull with caution: A DNA strand should be driven gently through a nanopore

More information: Davide Marenduzzo,Cristian Micheletti, Enzo Orlandini and De Witt Sumners: "Topological friction strongly affects viral DNA ejection" Proceedings of the National Academy of Sciences, November 22, 2013, DOI: 10.1073/pnas.1306601110

Related Stories

The movement of proteins

March 5, 2013

Cristian Micheletti, a scientist of the International School for Advanced Studies of Trieste (SISSA), has published in Physics of Life Reviews a review on an innovative instrument for protein analysis, a method for which ...

DNA: How to unravel the tangle

March 29, 2013

A research coordinated by the scientists at SISSA of Trieste has now developed and studied a numeric model of the chromosome that supports the experimental data and provides a hypothesis on the bundle's function.

The secret life of knots

June 10, 2013

Nanotechnologies require a detailed knowledge of the molecular state. For instance, it is useful to know when and how a generic polymer, a long chain of polymers (chain of beads), knots. The study of molecular entanglement ...

Tracking viral DNA in the cell

October 16, 2013

Cell biologists and chemists from the University of Zurich reveal how viral DNA traffics in human cells. They have developed a new method to generate virus particles containing labeled viral DNA genomes. This allowed them ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.