Testing virtual nuclear stockpiles

Nov 25, 2013
Studying extremely complex and chaotic processes like nuclear fusion or exploding stars relies on simulations running on supercomputers. Credit: Los Alamos National Laboratory

In 2010 the Pentagon revealed it had a total of 5,113 warheads in its nuclear stockpile, down from a peak of 31,225 at the height of the Cold War in 1967.

Even our newest nuclear weapons are at least 20 years old, and some are as old as 40. Such weapons were never designed to last indefinitely, and they can fail or become unpredictable as they age. Various treaties preclude nuclear weapons testing, so how do we assess and maintain the safety and readiness of those weapons remaining in our stockpile?

The only way is through simulations, and the application of science, technology, engineering and manufacturing. This is the task of the National Nuclear Security Administration, which is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation and naval reactor programs.

Jeff Jacobs, the Elwin G. Wood Distinguished Professor and head of the University of Arizona's Department of Aerospace and Mechanical Engineering, has been working with the Lawrence Livermore National Laboratory and the Los Alamos National Laboratory on NNSA-funded projects for more than 20 years to safeguard our nuclear stockpile, heading up a UA research effort that has brought in almost $8 million in research awards.

Jacobs' fundamental research in fluid instability generates experimental data to help national laboratories validate their simulations.

"The whole idea is that if we can't test nuclear weapons, we'll simulate them using huge computers," Jacobs said, referring to the NNSA's Sequoia system, the fastest supercomputer in the world. "There are huge multiscale, multiphysics problems to be solved," added Jacobs, who is director of the Experimental Fluid Mechanics and Instability Laboratory at the UA College of Engineering.

An important aspect of stockpile stewardship is ensuring a steady supply of qualified and experienced engineers and scientists who can carry this work into the future. To this end, Jacobs also works with the NNSA's Stewardship Science Academic Alliances Program.

Between 1945 and 1963, hundreds of above-ground nuclear blasts took place around the world. Credit: Wikimedia Commons

"The people who helped design are quickly retiring," Jacobs said. "Part of my role is to provide graduates with the training appropriate to work in these national labs. That's what stockpile stewardship means – we have to safeguard it for the future."

Work done by Jacobs stewarding the nation's nuclear stockpile has applications in some interesting areas, such as nuclear fusion, which he describes as the holy grail because of its potential to end the world's energy problems once and for all.

"Hydrogen, which is essentially unlimited in supply, is the energy source for fusion," he said. "It's what powers the sun."

Another application is astrophysics. Jacobs' research focuses on the chaotic behavior at the interface of two gases under extreme shock or acceleration. It doesn't get much more extreme or chaotic than a supernova, and Jacobs' research might help explain what happens during these violent stellar explosions.

Explore further: First of four Fukushima reactors cleared of nuclear fuel

add to favorites email to friend print save as pdf

Related Stories

Omega Laser Facility completes record 25,000 experiments

Nov 05, 2013

The National Nuclear Security Administration (NNSA) today announced that the Omega Laser Facility, a national user facility for NNSA that is located at and operated by the University of Rochester's Laboratory for Laser Energetics ...

Sequoia supercomputer transitions to classified work

Apr 18, 2013

The National Nuclear Security Administration (NNSA) today announced that its Sequoia supercomputer at Lawrence Livermore National Laboratory (LLNL) has completed its transition to classified computing in ...

U. S. envisions a new generation of nuclear weapons

Mar 19, 2007

Almost 62 years after detonation of the first atomic bombs, the United States is considering controversial proposals to produce a new generation of nuclear weapons and revamp its nuclear weapons complex, according to an article ...

Recommended for you

The state of shale

Dec 19, 2014

University of Pittsburgh researchers have shared their findings from three studies related to shale gas in a recent special issue of the journal Energy Technology, edited by Götz Veser, the Nickolas A. DeCecco Professor of Che ...

Website shines light on renewable energy resources

Dec 18, 2014

A team from the University of Arizona and eight southwestern electric utility companies have built a pioneering web portal that provides insight into renewable energy sources and how they contribute to the ...

Better software cuts computer energy use

Dec 18, 2014

An EU research project is developing tools to help software engineers create energy-efficient code, which could reduce electricity consumption at data centres by up to 50% and improve battery life in smart ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.