New technology could help food crops thrive in crowded fields

Nov 20, 2013 by Cathy Day, Nicole Miller
New UW-Madison research has identified a way to increase crop yields by planting fields more densely. The conventional corn plants pictured above were grown at the UW’s West Madison Agricultural Research Station. Credit: Jeff Miller

(Phys.org) —With the global population expected to reach 9 billion by 2050, the world's farmers are going to need to produce a lot more food—but without using much more farmland, as the vast majority of the world's arable land is already being used for agriculture.

One possible solution is to try to grow crops more densely in the field, thereby increasing yield per acre. But it's not as easy as just spacing seeds more closely together at planting time.

Packed too tight, for instance, will grow tall and spindly as they try to outcompete neighboring plants for access to sunlight—a phenomenon known as shade avoidance.

"The problem with shade avoidance when it comes to is that the plants are spending all this time and energy making stems so they can grow tall, instead of making food that we eat," explains UW-Madison plant geneticist Richard Vierstra, who is developing a work-around. His team is re-engineering a light-sensing molecule found in plants, known as , to allow plants to grow normally even when they're packed in tight.

"Instead of 30 inch rows, this technology could enable us to plant corn in 20-inch rows, boosting yields by as much as 50 percent—if we can get the plants to ignore their neighbors," says Vierstra.

This illustration shows the 3-D structure of parts of the phytochrome molecule. Credit: Richard Vierstra

Phytochrome is the main photoreceptor that allows plants to tell when the lights are on and when they're off. It's what tells seeds to germinate and young seedlings to become green, and enables plants to establish circadian rhythms—an internal clock system, says Vierstra. "And it also allows a plant to sense whether it's in full sun or whether it's being shaded by other plants."

In the lab, Vierstra and his scientific team developed the first three-dimensional structures of phytochromes. Using these models, they are now trying to rationally redesign the photoreceptor to have altered light sensing properties. This re-engineering involves creating hundreds of possibly interesting phytochrome mutants, and then testing them for light sensitivity both in the test tube and inside plants.

Already, Vierstra's team has found a number of mutants that are extremely sensitive to light. These mutant phytochrome molecules, if genetically engineered into food crops, could trick the into thinking they are getting plenty of light, even when they're growing in a crowded field.

Vierstra is in the process of patenting the technology, and already knows of a large agribusiness company that's eager to help commercialize it.

"We're starting to engineer the phytochrome system in corn, in lines that will eventually be used for breeding," he says. "It's exciting to think about the potential this technology has to boost agricultural productivity."

Explore further: First step to reduce plant need for nitrogen fertilizer uncovered

add to favorites email to friend print save as pdf

Related Stories

Scientists find how plants grow to escape shade

Apr 15, 2012

Mild mannered though they seem, plants are extremely competitive, especially when it comes to getting their fair share of sunlight. Whether a forest or a farm, where plants grow a battle wages for the sun's ...

Plants 'talk' to plants to help them grow

May 06, 2013

Having a neighborly chat improves seed germination, finds research in BioMed Central's open access journal BMC Ecology. Even when other known means of communication, such as contact, chemical and light-mediated signal ...

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

11 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

11 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

19 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.