Researchers develop stretchable wire-shaped supercapacitor

November 4, 2013 by Karen B. Roberts
UD's Tsu-Wei Chou (left) with visiting scholar Ping Xu. Credit: Ambre Alexander

(Phys.org) —Advances in flexible and stretchable electronics have prompted researchers to explore ways to create stretchable supercapacitors—robust energy storage devices—to power these and other devices.

Supercapacitors offer significant advantages over common batteries, including the ability to recharge in seconds, exceptionally long life span and high reliability, leading to their incorporation in portable consumer electronics, memory backup devices, hybrid vehicles and even large industrial scale power and energy management systems.

Wire-shaped supercapacitors, in particular, have attracted attention for uses in wearable energy devices.

University of Delaware professors Tsu-Wei Chou and Bingqing Wei have successfully developed a compact, stretchable wire-shaped supercapacitor (WSS) based on continuous (CNT) .

Chou, Pierre S. du Pont Chair of Engineering, is an internationally-known composites expert who specializes in using carbon nanotube fibers for multifunctional composites and devices. Wei, professor of mechanical engineering, has expertise in creating scalable power sources for .

They used a prestraining-then-buckling approach to fabricate the wire-shaped supercapacitor using a Spandex fiber as the substrate, a polyvinyl alcohol-sulfuric acid gel as the solid electrolyte, and carbon nanotube (CNT) fibers as the active electrodes.

When subjected to a tensile strain of 100 percent over 10,000 charge/discharge cycles, the CNT supercapacitor's electrochemical performance improved to 108 percent, revealing its excellent electrochemical stability.

Wei, who credits the 's performance to the intrinsic mechanical and physical properties of the flexible CNT fibers, said, "The network of individual CNTs and their bundles endow the fibers with the capacity to withstand large deformation without sacrificing mechanical properties, electrical conductivity, and electrochemical properties."

"This unique combination of outstanding electrochemical performance and stretchability may enable the integration of wire-shaped supercapacitors with wearable, miniaturized and portable electronic devices," said Chou.

The professors recently published their findings in Advanced Energy Materials. The first author on the paper was Ping Xu, a visiting student from Donghua University in Shanghai, China.

Explore further: Researchers report progress in development of carbon nanotube-based continuous fibers

Related Stories

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.