Solar cells utilize thermal radiation

Nov 04, 2013

Thermal radiation from the sun is largely lost on most silicon solar cells. Up-converters transform the infrared radiation into usable light, however. Researchers have now for the first time successfully adapted this effect for use in generating power.

There is more to solar than meets the eye: Sunburn develops from unseen UV radiation. While we sense infrared radiation as heat on our skin, though invisible to us. Solar cells also receive only a portion of : approximately 20 percent of the energy contained in the solar spectrum is unavailable to cells made of silicon – they are unable to utilize a part of the infrared radiation, the short-wavelength IR radiation, for generating power.

Researchers of the Fraunhofer Institute for Solar Energy Systems, ISE, in Freiburg, together with their colleagues at the University of Bern, Switzerland, and the Heriot-Watt University in Edinburgh, Scotland, have now for the first time made a portion of this radiation usable with the assistance of a practical up-converter. The technology that transforms infrared into usable light has been known since the 1960s. However, it has only been investigated in connection with since 1996. "We have been able to adapt both the solar cells and the up-converter so as to obtain the biggest improvement in efficiency so far," reports Stefan Fischer, a scientist at ISE. The potential is big: Silicon solar cells theoretically convert about thirty percent of sunlight falling upon them into electrical power. Up-converters could increase this portion to a level of forty percent.

A ladder for light particles

However, how does the up-converter manage to utilize the for the solar cells? As solar radiation falls on the solar cells, they absorb the visible and near-infrared light. The infrared portion is not absorbed, however, passing right through them. On the back side, the radiation runs into the up-converter – essentially a microcrystalline powder made of sodium yttrium fluoride embedded in a polymer. Part of the yttrium has been replaced by the scientists with the element erbium, which is active in the optical range and responsible for the up-conversion.

As the light falls on this up-converter, it excites the erbium ions. That means they are raised to a higher energy state. You can imagine this reaction as climbing up a ladder: An electron in the ion uses the energy of the light particle to climb up the first step of the ladder. A second light particle enables the electron to climb to the second step, and so on. An ion that has been excited in this manner can "jump down" from the highest step or state. In doing so, it emits light with an energy equal to all of the that have helped the electron to climb on up. The up-converter collects, so to speak, the energy of several of these particles and transfers it to a single one. This has so much energy that the solar cells "see" it and can utilize it.

Researchers had to adapt the solar cells in order to be able to employ an up-converter such as this. Normally, metal is vapour-deposited on the backside, enabling current to flow out of the solar cells, so no light can shine through normally. "We equipped the solar cells with metal lattices on the front and rear sides so that IR light can pass through the solar cells. In addition, the light can be used by both faces of the cell – we call this a bi-facial solar cell," explains Fischer. Scientists have applied specialized anti-reflection coatings to the front and rear sides of the solar cell. These cancel reflections at the surfaces and assure that the cells absorb as much as possible.

"This is the first time we have adapted the anti-reflection coating to the backside of the solar cell as well. That could increase the efficiency of the modules and raise their yields. The first companies are already trying to accomplish this by implementing bi-facial solar cells," says Fischer, emphasizing the potential of the approach.

Explore further: Scientists unveil energy-generating window

add to favorites email to friend print save as pdf

Related Stories

Scientists unveil energy-generating window

Oct 24, 2013

Scientists in China said Thursday they had designed a "smart" window that can both save and generate energy, and may ultimately reduce heating and cooling costs for buildings.

UCLA scientists double efficiency of novel solar cell

Jul 29, 2013

Nearly doubling the efficiency of a breakthrough photovoltaic cell they created last year, UCLA researchers have developed a two-layer, see-through solar film that could be placed on windows, sunroofs, smartphone ...

Solar cells made from black silicon

Oct 01, 2012

Solar cells convert three-quarters of the energy contained in the Sun's spectrum into electricity – yet the infrared spectrum is entirely lost in standard solar cells. In contrast, black silicon solar cells ...

The fluorescent future of solar cells

May 09, 2013

(Phys.org) —For some solar cells, the future may be fluorescent. Scientists at Yale have improved the ability of a promising type of solar cell to absorb light and convert it into electrical power by adding ...

Recommended for you

New type of solar concentrator desn't block the view

11 hours ago

(Phys.org) —A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through ...

Asian inventions dominate energy storage systems

12 hours ago

In recent years, the number of patent applications for electrochemical energy storage technologies has soared. According to a study by the Technical University Munich, the largest volume of applications is ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Ddoodle
not rated yet Nov 05, 2013
Thermal radiation (Infrared) cell, i remember something it was 2 or 3 years ago.

http://www.youtub...amp;list
But we still buy these cheap solar cells from china. It totally kills all innovations. No advances for the general public. Just cheap stuff stuff stuff, oh i hate this.