Snap to attention: Polymers that react and move to light

November 8, 2013
Photomechanical snap-through in the arch-shaped azobenzene-polyimide samples as revealed by imaging from the side. Credit: University of Pittsburgh

Microvehicles and other devices that can change shape or move with no power source other than a beam of light may be possible through research led by the University of Pittsburgh. The researchers are investigating polymers that "snap" when triggered by light, thereby converting light energy into mechanical work and potentially eliminating the need for traditional machine components such as switches and power sources.

"I like to compare this action to that of a Venus flytrap," says M. Ravi Shankar, lead author of the study and associate professor of industrial engineering in the University's Swanson School of Engineering. "The underlying mechanism that allows the Venus flytrap to capture prey is slow. But because its internal structure is coupled to use elastic instability, a snapping action occurs, and this delivers the power to shut the trap quickly. A similar mechanism acts in the beak of the Hummingbird to help snap-up insects"

The research was performed by Shankar in collaboration with Timothy J. White of the Air Force Research Laboratory at Wright-Patterson Air Force Base and Matthew Smith, assistant professor of engineering at Hope College in Holland, Mich.

Focusing on this elastic instability, Shankar examined polymeric materials, prepared by researchers at the Air Force Research Laboratory, which demonstrated unprecedented actuation rates and output powers. With from a hand-held laser pointer, the polymers generate high amounts of power to convert the light into without any onboard or wiring. Specific functions would be pre-programmed into the material so that the device would function once exposed to a light source and controlled by changing the character of the light.

"As we look to real-world applications, you could activate a switch simply by shining light on it," Shankar says. "For example, you could develop soft machines such as stents or other biomedical devices that can be more adaptive and easily controlled. In a more complex mechanism, we could imagine a light-driven robotic or morphing structure, or microvehicles that would be more compact because you eliminate the need for an on-board power system. The work potential is built into the polymer itself and is triggered with light."

The study, titled "Contactless, photoinitiated snap-through in azobenzene-functionalized polymers," was published Oct. 30, 2013, in the early edition of the Proceedings of the National Academy of Sciences.

Explore further: Hummingbirds catch flying bugs with the help of fast-closing beaks (w/ video)

Related Stories

Bubbles are the new lenses for nanoscale light beams

August 9, 2013

Bending light beams to your whim sounds like a job for a wizard or an a complex array of bulky mirrors, lenses and prisms, but a few tiny liquid bubbles may be all that is necessary to open the doors for next-generation, ...

Drawing and writing in liquid with light (w/ Video)

November 4, 2013

University of Helsinki researchers have manufactured photochemically active polymers which can be dissolved in water or certain alcohols. The new soluble, photosensitive polymer was created by doctoral student Szymon Wiktorowicz.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

jimbo92107
not rated yet Nov 09, 2013
This is how to make a solar panel follow the sun without a computer.
DIY Solar
not rated yet Nov 21, 2013
very helpful information! I am very fascinated with DIY solar panels and things that have to do with self sufficiency.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.