Scientists create super X-rays

Nov 18, 2013

A new X-ray laboratory at the University of Melbourne houses the most powerful X-ray machine in Australia.

Professor Christopher Chantler and his team at the School of Physics have built a new rotating anode source that turns ordinary X-rays into super X-rays.

After the synchrotron, which is a different type of technology, this is one of the most powerful scientific tools to investigate atoms.  

 "This super X-ray machine gives us the capability of mapping the energies of the atom previously inaccessible and unseen by other apparatus," said Professor Chantler.

The device is already of interest to chemical, biological and physical scientists as it can enhance investigations of chemical environments, the interaction of light with matter, and link to studies of complex mineral formation in the earth's crust.

The research team tested the super X-rays on copper atoms and demonstrated unprecedented levels of accuracy at the atomic level that has never been seen before.

Professor Chantler and his team recently published the copper atom data in the Journal of Physics B. The data shed new light on the theoretical calculations and theoretical electron scattering models.

"This copper atom data also means we have provided new insights into calibrating less powerful X-ray machines with much higher accuracy."

The new X-ray laboratory will train a new generation of students as a stepping-stone for exciting opportunities at synchrotrons and .

Dr Sobott, one of the awardees of the prestigious Bill Gates Humanitarian award winner said, 'The real value of the rotating anode is that it opens up new scientific experimentation. This is particularly the case for high statistics, high precision measurements required by our group as we strive to probe the nature of matter."

"We are thrilled that the super X-ray has industrial representatives from scientific instruments makers and imaging companies interested about future opportunities for commercial development," said Professor Chantler.

Explore further: New technique traces ejected electrons back to atomic shells

add to favorites email to friend print save as pdf

Related Stories

Laser empties atoms from the inside out

Mar 25, 2013

An international team of plasma physicists has used one of the world's most powerful lasers to create highly unusual plasma composed of hollow atoms.

Measuring individual atoms with compact X-ray lasers

Nov 30, 2012

To look at small objects typically requires big machines. For example, the study of single atoms with a laser requires x-ray radiation of such high energy that it is only produced by accelerating electrons ...

Giant atom eats quantum gas

Oct 31, 2013

A team of experimental and theoretical physicists from the University of Stuttgart studied a single micrometer sized atom. This atom contains tens of thousands of normal atoms in its electron orbital. These ...

Recommended for you

Robotics goes micro-scale

6 hours ago

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 0

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Unraveling the 'black ribbon' around lung cancer

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?