Scientists create light bullets for high-intensity optical applications

November 12, 2013 by Lisa Zyga feature
Compared to two types of Gaussian beams (EEGB and ECGB), the ring-Airy wavepacket has a more precisely focused shape, appearing as a ‘light bullet.’ The wavepacket shapes are shown at different distances as the beams propagate from left to right. Credit: P. Panagiotopoulos, et al. ©2013 Macmillan Publishers Limited

(Phys.org) —Controlling the propagation of high-intensity light beams as they travel through air (or other transparent media) is a challenging task, but scientists have now shown that a relatively new type of light beam called a ring-Airy beam can self-focus into intense light bullets that propagate over extended distances. These well-defined, high-intensity optical wavepackets could have applications in a variety of areas, such as laser micromachining and harmonic generation.

The scientists, P. Panagiotopoulos, D.G. Papazoglou, A. Couairon and S. Tzortzakis, from institutions in Greece and France, have published a paper in a recent issue of Nature Communications in which they show theoretically and experimentally how ring-Airy beams transform into light bullets.

An airy beam is a type of that has the distinct feature of forming a parabolic arc as it propagates through space. In fact, it gets its name from the Airy integral, developed in the 1830s by Sir George Biddell Airy to describe the way light bends in a rainbow.

In 2011, scientists (including some of the authors of the current paper) experimentally demonstrated an Airy beam in the shape of a ring. In the linear regime, this ring-Airy beam can focus itself into a sharp focal point, which could make it an ideal candidate for precise laser ablation applications in hard-to-reach environments.

In the new study, the scientists have investigated the properties of ring-Airy beams in the non-linear regime, and found them to be even more impressive than in the linear regime. The scientists found that the ring-Airy wavepacket reshapes itself into a propagating high intensity light bullet that spreads neither in space nor in time over significantly longer distances than Gaussian beams, which are often used in conventional lasers.

The researchers also found that, when the input power is increased, the ring-Airy beam's focus position is not shifted nearly as much as it is for Gaussian beams. The researchers could mathematically predict the position of the ring-Airy beam's focus for a given input power, which they confirmed through experiments.

These highly focused, high-intensity ring-Airy beam bullets offer a very high level of control that cannot be achieved with equivalent Gaussian beams, making them ideal for a variety of optical applications ranging from precision materials processing to attosecond drivers.

Explore further: Shining a light around corners: Scientists explore a new method for curving 'Airy' light beams

More information: P. Panagiotopoulos, et al. "Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets." Nature Communications. DOI: 10.1038/ncomms3622

Related Stories

Bend breakthrough sends light around a corner

August 12, 2011

(PhysOrg.com) -- Australian National University scientists have successfully bent light beams around an object on a two dimensional metal surface, opening the door to faster and cheaper computer chips working with light.

Researchers discover a way to generate an electron Airy beam

February 22, 2013

(Phys.org)—A team of physicists in Israel has succeeded in generating an electron Airy beam for the first time. As they describe in their paper published in the journal Nature, the researchers used a technique similar to ...

Novel beams made of twisted atoms

August 7, 2013

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany are about to be ...

Recommended for you

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Ober
not rated yet Nov 13, 2013
So could this be used for improved space based, laser communications?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.