Scientists create light bullets for high-intensity optical applications

Nov 12, 2013 by Lisa Zyga feature
Compared to two types of Gaussian beams (EEGB and ECGB), the ring-Airy wavepacket has a more precisely focused shape, appearing as a ‘light bullet.’ The wavepacket shapes are shown at different distances as the beams propagate from left to right. Credit: P. Panagiotopoulos, et al. ©2013 Macmillan Publishers Limited

(Phys.org) —Controlling the propagation of high-intensity light beams as they travel through air (or other transparent media) is a challenging task, but scientists have now shown that a relatively new type of light beam called a ring-Airy beam can self-focus into intense light bullets that propagate over extended distances. These well-defined, high-intensity optical wavepackets could have applications in a variety of areas, such as laser micromachining and harmonic generation.

The scientists, P. Panagiotopoulos, D.G. Papazoglou, A. Couairon and S. Tzortzakis, from institutions in Greece and France, have published a paper in a recent issue of Nature Communications in which they show theoretically and experimentally how ring-Airy beams transform into light bullets.

An airy beam is a type of that has the distinct feature of forming a parabolic arc as it propagates through space. In fact, it gets its name from the Airy integral, developed in the 1830s by Sir George Biddell Airy to describe the way light bends in a rainbow.

In 2011, scientists (including some of the authors of the current paper) experimentally demonstrated an Airy beam in the shape of a ring. In the linear regime, this ring-Airy beam can focus itself into a sharp focal point, which could make it an ideal candidate for precise laser ablation applications in hard-to-reach environments.

In the new study, the scientists have investigated the properties of ring-Airy beams in the non-linear regime, and found them to be even more impressive than in the linear regime. The scientists found that the ring-Airy wavepacket reshapes itself into a propagating high intensity light bullet that spreads neither in space nor in time over significantly longer distances than Gaussian beams, which are often used in conventional lasers.

The researchers also found that, when the input power is increased, the ring-Airy beam's focus position is not shifted nearly as much as it is for Gaussian beams. The researchers could mathematically predict the position of the ring-Airy beam's focus for a given input power, which they confirmed through experiments.

These highly focused, high-intensity ring-Airy beam bullets offer a very high level of control that cannot be achieved with equivalent Gaussian beams, making them ideal for a variety of optical applications ranging from precision materials processing to attosecond drivers.

Explore further: Nanospiked bacteria are the brightest hard X-ray emitters

More information: P. Panagiotopoulos, et al. "Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets." Nature Communications. DOI: 10.1038/ncomms3622

Related Stories

Bend breakthrough sends light around a corner

Aug 12, 2011

(PhysOrg.com) -- Australian National University scientists have successfully bent light beams around an object on a two dimensional metal surface, opening the door to faster and cheaper computer chips working ...

Novel beams made of twisted atoms

Aug 07, 2013

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany ...

Recommended for you

To conduct, or to insulate? That is the question

Jul 02, 2015

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

Soundproofing with quantum physics

Jul 02, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon ...

Extreme lab at European X-ray laser XFEL is a go

Jul 02, 2015

The Helmholtz Senate has given the green light for the Association's involvement in the Helmholtz International Beamline (HIB), a new kind of experimentation station at the X-ray laser European XFEL in Hamburg, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Ober
not rated yet Nov 13, 2013
So could this be used for improved space based, laser communications?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.