3 Questions: Richard Binzel on the discovery of three large, near-Earth asteroids

Nov 08, 2013 by Jennifer Chu
Smooth sections on asteroid Itokawa are shown. Credit: ISAS/JAXA

Last week, scientists in MIT's Department of Earth, Atmospheric and Planetary Sciences helped characterize three large, near-Earth asteroids, two of which measure about 12 miles in diameter—the largest asteroids to have been discovered in 23 years. The smallest of the three asteroids measures little more than a mile across, but it may pass within 3.4 million miles of Earth, making it a "potentially hazardous asteroid."

The team made their using NASA's Infrared Telescope Facility in Hawaii as part of a project devoted to determining the compositions of new comets and asteroids relatively close to Earth. While these newest asteroids pose little danger to our planet in the near future, they possess some unusual features. MIT News spoke with Richard Binzel, a professor of planetary sciences, about his team's measurements, and the likelihood of a close encounter.

Q: What are you able to tell about these three asteroids from your brief observations of them?

A: So far, we have made spectral color measurements of only the strangest one of these: 2013 UQ4. (These are names only scientists can love!) This object is coming from out beyond Pluto, from the region we call the Kuiper Belt. And to top it off, it is also orbiting in a backward direction compared to all the planets. Nearly all of the 1,000 currently known Kuiper Belt objects reside in orbits that at all times keep them at least as far away as Neptune. This new object, "UQ4," is on an orbit that carries it closer to the sun than Mars, meaning that it comes rather close to the Earth. From our , we can estimate that its composition is likely carbon-rich, meaning the surface is very dark, reflecting only about 4 percent of the sunlight that hits it. Even though this object does not reflect very much light, the fact that we can see it in our telescopes implies that it must be rather large. From our measurements, we deduce it is nearly 20 kilometers, or 12 miles, across.

Q: The last large was detected 23 years ago. Why haven't these new asteroids been detected until now? And what conditions made it possible for you to see them?

A: These newly found objects are in orbits that usually keep them rather far from the sun, meaning they are too faint to see. In addition to being far from the sun, they also spend most of their time way above or way below the plane where the Earth and other planets orbit—thus they are far from where astronomers concentrate most of their searches. So it has been a combination of these objects just happening to be getting close enough to the sun and the ongoing diligence of search teams that has revealed them to be there.

Q: What hazard, if any, do these near-Earth asteroids pose to our planet?

A: Fortunately, none of these objects poses any foreseeable hazard to Earth. Only one, 2013 UP8, approaches Earth's orbit close enough to merit the categorization as "potentially hazardous." All that means is that astronomers have a long-term interest to continue to track its orbit.

Explore further: Asteroid 2013 TV135: A reality check

add to favorites email to friend print save as pdf

Related Stories

Asteroid 2013 TV135: A reality check

Oct 18, 2013

(Phys.org) —Newly discovered asteroid 2013 TV135 made a close approach to Earth on Sept. 16, when it came within about 4.2 million miles (6.7 million kilometers). The asteroid is initially estimated to ...

How many moons does Earth have?

Jul 05, 2013

Look up into the night sky and count the moons. You can see only one moon, "the" Moon. But does the Earth have any other moons? Around the Solar System, multiple moons are the rule. Jupiter has 67 natural ...

Near-Earth asteroid is really a comet

Sep 10, 2013

Some things are not always what they seem—even in space. For 30 years, scientists believed a large near-Earth object was an asteroid. Now, an international team including Joshua Emery, assistant professor ...

WISE mission finds lost asteroid family members

May 30, 2013

(Phys.org) —Data from NASA's Wide-field Infrared Survey Explorer (WISE) have led to a new and improved family tree for asteroids in the main belt between Mars and Jupiter.

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

11 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

12 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

12 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

Apr 16, 2014

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...