Refined materials provide booster shot for solar energy conversion

Nov 18, 2013 by Rick Kubetz
This is one of several projects receiving support from the College of Engineering SRI program. Project group members include (l to r) Lane Martin, Elif Ertekin, Ed Seebauer, Sungki Lee and Brent Apgar (seated).

If you want to get the most out of the sun, you have to improve the performance of the materials used.

An interdisciplinary team of Engineering at Illinois researchers has set its sights on improving the materials that make conversion/photocatalysis possible. Together, they have developed a new form of high-performance solar photocatalyst based on the combination of the TiO2 (titanium dioxide) and other "metallic" oxides that greatly enhance the visible light absorption and promote more efficient utilization of the solar spectrum for energy applications.

"This is a fundamentally new way of approaching these matters," explained Lane Martin, who is an assistant professor in the Department of Materials Science and Engineering at Illinois. "Our research group incorporatesaspects of condensed matter physics, semiconductor device engineering, and photochemistry to make new performance possible. From these materials we can imagine carbon-neutral energy production of clean-burning fuels, waste water purification and remediation, and much more.

"As a follow-up to our prior work, we expanded our discovery of new strongly absorbing energy materials," Martin added. "The overall concept is that we have developed a new form of high-performance solar photocatalyst based on the combination of the TiO2 and 'metallic' oxides." The group's paper "Enhanced photoelectrochemical activity in all-oxide heterojunction devices based on correlated 'metallic' oxides," appears in the journal, Advanced Materials (Volume 25, Issue 43, pages 6201–6206). The researchers also have a patent application pending for this work.

According to Martin the research paper addresses the most pressing limiting factor of these materials for applications – their poor absorption of light.

"This paper covers several new variations where we integrate chemically compatible correlated 'metallic' oxides with the model n-type, wide band gap oxide semiconductor TiO2 to produce high-performance photocatalytic heterojunctions. These composite structures operate on the principle of hot carrier injection from the 'metallic' oxide into the TiO2. "

These effects are made possible by harnessing the diverse range of correlated electron physics of common metallic oxide materials including n-type LaNiO3 (lanthanum nickelate), SrRuO3 (strontium ruthenate), and SrVO3 (strontium vanadate) and p-type La0.5Sr0.5CoO3 (lanthanum strontium cobaltite) and La0.7Sr0.3MnO3 (lanthanum strontium manganite). These materials have been extensively explored (individually) for their novel electronic transport, magnetic properties, and other exotic physical phenomena and are widely utilized as epitaxial bottom electrodes in ferroic heterostructures.

Martin noted that one of the new studied (La 0.5Sr0.5CoO3-based devices) demonstrated photocatalytic activities that are 27-, 6.2-, and 3-times larger than that for a single-layer TiO2 film, nanopowder Degussa P25 samples, and the prior report of devices based on SrRuO3, respectively.

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: onlinelibrary.wiley.com/doi/10… a.201303144/abstract

Related Stories

New low-cost, transparent electrodes

Jun 27, 2013

Indium tin oxide (ITO) has become a standard material in light-emitting diodes, flat panel plasma displays, electronic ink and other applications because of its high performance, moisture resistance, and capacity for being ...

Lanthanum chromium oxide's energetic dance with light

Feb 13, 2013

Scientists at Pacific Northwest National Laboratory, University College London, and Florida International University have determined how a particular oxide material, lanthanum chromium oxide (LCO), interacts with visible ...

Promising new alloy for resistive switching memory

Sep 20, 2013

Memory based on electrically-induced "resistive switching" effects have generated a great deal of interest among engineers searching for faster and smaller devices because resistive switching would allow ...

Recommended for you

Researchers make magnetic graphene

6 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.