Physics shows how the mushroom spews its spores

Nov 25, 2013
The spores released by an Amanita form a cloud of bright little specks. Credit: Patrick Hickey

Plants use a variety of methods to spread their seeds, including gravity, forceful ejection, and wind, water, and animal dispersion. But what of the mushrooms, whose spores also need to be strewn far and wide to ensure their propagation?

Biologists have long thought that the spores produced by a mushroom's cap simply drop into the wind and blow away. The problem with that notion, said Emilie Dressaire, a professor of experimental fluid mechanics at Trinity College in Hartford, Conn., is that spores can be dispersed even when the air is still. So how do the mushrooms do it? Dressaire, along with Marcus Roper of the University of California, Los Angeles (UCLA), believe they have found the answer: they make their own wind.

Dressaire will present the findings in a talk today at the 66th Annual Meeting of the American Physical Society's (APS) Division of Fluid Dynamics (DFD), held Nov. 24-26, 2013, in Pittsburgh, Pa.

Using high-speed videography and mathematical modeling of spore dispersal in commercially grown oyster and Shiitake mushrooms, Dressaire, Roper, and their students found that the fungi created their wind by releasing water vapor. The vapor cools the air locally, and this creates convective cells that move the air around in the mushroom's vicinity.

Dressaire said these air movements are strong enough to lift the spores clear of the mushroom. As a result, she continued, "mushrooms are able to disperse their spores even in the most inhospitable surroundings."

As the laser beam shines next to a Shiitake, a dense current is observed to disperse the spores. Credit: Emilie Dressaire & Marcus Roper

The team believes this evaporative cooling process might be used to some degree by all mushroom-producing fungi, including those that cause disease in plants, animals, and humans.

"Most people, even scientists, think of simply as machines for producing spores," Roper said. "The more each machine produces, the more likely it to successfully colonize new habitats." But the new work suggests that there is much more going on.

"Our research shows that these 'machines' are much more complex than that: they control their local environments, and create winds where there were none in nature," Dressaire said. "That's pretty amazing, but fungi are ingenious engineers."

Explore further: New insights found in black hole collisions

More information: The presentation, "Control of fluidic environments by mushrooms," is at 11:22 am on Monday, November 25, 2013 in the David L. Lawrence Convention Center Room 306/307. ABSTRACT: http://meeting.aps.org/Meeting/DFD13/Event/203211

add to favorites email to friend print save as pdf

Related Stories

Mosses use 'mushroom clouds' to spread spores (w/ Video)

Jul 23, 2010

(PhysOrg.com) -- Scientists in the US have solved the mystery of how peat mosses manage to get their spores high enough to catch the wind, discovering that they produce vortex rings of air, like miniature ...

The unravelled mushroom genome offers many opportunities

Oct 08, 2012

A consortium of 20 research groups, including Wageningen UR Plant Breeding, part of Wageningen UR, has mapped the entire genome of the button mushroom (Agaricus bisporus). This represents a major step forwar ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.