In plant photosynthesis, scientists see clues for improving solar energy cells

Nov 22, 2013
solar cells

Solar cells optimized to suit local light conditions, or made more efficient by using a broader part of the solar spectrum, are among the imaginative applications foreseen from ground-breaking new insights into plant photosynthesis pioneered in Canada.

Indeed new, more fully detailed knowledge of how plants and other living organisms convert sunlight into energy and carbon dioxide into biomass may offer clues to addressing both the global energy crisis and global warming, says Dr. Gregory Scholes, among the world's most renowned scientists in plant .

Dr. Scholes, distinguished professor of Chemistry at the University of Toronto and 2012 recipient of the John C. Polanyi Award from Canada's Natural Sciences and Engineering Research Council (NSERC), will describe his work in a special public lecture Nov. 26 supported by the Royal Canadian Institute (RCI) for the Advancement of Science, NSERC, and Toronto's Ryerson University.

"This new bio-inspired understanding will help scientists devise artificial light gathering systems that can far exceed existing solar cells in functionality, and so pave the way to new, environmentally-friendly energy technologies," says Dr. Scholes.

"We can imagine, for example, that optimize themselves to suit the local light conditions or that make better use of the by efficiently capturing and processing light of different colors."

Studies of nature's "photosynthetic machines" have involved such organisms as fronds in kelp forests (which can grow 15 cm - 6 inches - in a single day), algae growing 20 meters - 60 feet - underwater even in winter when over 1 meter of ice covers the water - and bacteria from the South Andros Black Hole, Bahamas, which have evolved to short circuit photosynthetic light harvesting and thereby warm their local environment.

All have helped science identify some fascinating chemical physics and determine that a chain of reactions involved in photosynthesis starts with hundreds of light-absorbing molecules that harvest sunlight and 'concentrate' the fleetingly stored energy at a biological solar cell called a "reaction center."

And that happens with incredible speed. After sunlight is absorbed, the energy is trapped at reaction centers in about one billionth of a second.

New understanding of the photosynthetic process can also help alleviate the biggest looming threat to humanity—climate change—since photosynthesis makes use of the sun's energy to convert the greenhouse gas (CO2) into useful biomass.

More than 10 quadrillion photons of light strike a leaf each second. Incredibly, almost every visible photon (those with wavelengths between 400 and 700 nanometers—1 nm equalling 1 billionth of a meter) is captured by pigments and initiates the steps of plant growth.

Says Dr. Scholes: "Photosynthetic solar energy conversion occurs on an immense scale across the Earth, influencing our biosphere from climate to oceanic food webs. Energy from sunlight is absorbed by brightly colored molecules, like chlorophyll, embedded in proteins comprising the photosynthetic unit."

"While photosynthesis does not generate electricity from light, like a solar cell, it produces energy - a "solar fuel" - stored in molecules," he adds. "Solar powered production of complex molecules is foreseen as an important contribution to management in the future."

Concludes Dr. Scholes: "Nature has worked out with astonishing efficiency some the riddles of fundamental importance that vex our species today," he adds. "If we are hunting for inspiration, we should keep our eyes open for the unexpected and learn from the natural sciences."

Explore further: Bio-based solar cell: Researchers generate electricity rather than biomass with photosynthetic proteins

Provided by Royal Canadian Institute for the Advancement of Science

5 /5 (7 votes)

Related Stories

Team provides new insight into photosynthesis

Apr 04, 2013

Pigments found in plants and purple bacteria employed to provide protection from sun damage do more than just that. Researchers from the University of Toronto and University of Glasgow have found that they ...

Two for one in solar power

Nov 17, 2013

Solar cells offer the opportunity to harvest abundant, renewable energy. Although the highest energy light occurs in the ultraviolet and visible spectrum, most solar energy is in the infrared. There is a ...

Lessons to be learned from nature in photosynthesis

Sep 23, 2011

Photosynthesis is one of nature's finest miracles. Through the photosynthetic process, green plants absorb sunlight in their leaves and convert the photonic energy into chemical energy that is stored as sugars ...

Recommended for you

Ikea buys wind farm in Illinois

22 hours ago

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

Power arm band for wearables harvests body heat

Apr 12, 2014

(Phys.org) —A group of Korean researchers have turned their focus on supplying a reliable, efficient power source for wearables. Professor Byung Jin Cho of the Korea Advanced Institute of Science and Technology ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.