Oxygen, phosphorous and early life on Earth

November 17, 2013

Two billion years ago the Earth system was recovering from perhaps the single-most profound modification of its surface environments: the oxygenation of the atmosphere and oceans. This led to a series of major changes in global biogeochemical cycles, as a team around Aivo Lepland of the Norwegian Geological Survey NGU reports in the latest online edition of "Nature Geoscience".

This also resulted in the distribution of one of life's key elements, phosphorous. Studies on the unique organic-rich Zaonega rock formation preserved in Carelia, NW Russia, with an age of around two billion years has revealed an astonishing result: "The formation of Earth's earliest phosphorites was influenced strongly, if not controlled completely, by the activity of sulfur bacteria", says co-author Richard Wirth of the GFZ German Research Centre for Geosciences, who analyzed the rock samples with an electron microscope.

"This activity occurred in an oil field setting that had been influenced by active volcanism and associated venting and seeping." In the modern world, sulfur bacteria inhabit upwelling vent and seep areas known as "Black Smokers" and mediate phosphorite formation. The authors therefore conclude that the formation of the earliest worldwide phosphorites 2 billion years ago can be linked to the establishment of sulfur bacteria habitats, triggered by the oxygenation of the Earth.

Explore further: Atmospheric oxygenation three billion years ago

More information: Nature Geoscience Advance Online Publication, DOI: 10.1038/ngeo2005

Related Stories

Atmospheric oxygenation three billion years ago

September 25, 2013

Oxygen appeared in the atmosphere up to 700 million years earlier than we previously thought, according to research published today in the journal Nature, raising new questions about the evolution of early life.

Pilbara home to 3.5 billion-year-old bacterial ecosystems

November 11, 2013

(Phys.org) —Evidence of complex microbial ecosystems dating back almost 3.5 billion years has been found in Western Australia's Pilbara region by an international team including UWA Research Assistant Professor David Wacey.

Iron in primeval seas rusted by bacteria

April 25, 2013

(Phys.org) —Researchers from the University of Tübingen have been able to show for the first time how microorganisms contributed to the formation of the world's biggest iron ore deposits. The biggest known deposits – ...

Recommended for you

Scientists examine bacterium found 1,000 feet underground

December 8, 2016

Pioneering work being carried out in a cave in New Mexico by researchers at McMaster University and The University of Akron, Ohio, is changing the understanding of how antibiotic resistance may have emerged and how doctors ...

New studies take a second look at coral bleaching culprit

December 7, 2016

Scientists have called superoxide out as the main culprit behind coral bleaching: The idea is that as this toxin build up inside coral cells, the corals fight back by ejecting the tiny energy- and color-producing algae living ...

Cosmic dust found in city rooftop gutters

December 7, 2016

(Phys.org)—A small team of researchers with Imperial College London, the Natural History Museum in London, Project Stardust in Norway and Université Libre de Bruxelles in Belgium, has found samples of cosmic dust in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.