Optical materials: Solar cells step up

Nov 20, 2013
Optical materials: Solar cells step up
Nanoparticles (green) convert near-infrared radiation (NIR) to visible light (VIS), which can be absorbed by quantum dots (red). This creates electrons (e-) which are injected into the titanium oxide (blue) scaffold. Credit: A*STAR Institute of Materials Research and Engineering

The Sun is our most promising source of clean and renewable energy. The energy that reaches the Earth from the Sun in an hour is almost equivalent to that consumed by humans over a year. Solar cells can tap this massive source of energy by converting light into an electrical current. However, these devices still require significant improvements in efficiency before they can compete with more traditional energy sources.

Xiaogang Liu, Alfred Ling Yoong Tok and their co-workers at the A*STAR Institute of Materials Research and Engineering, the National University of Singapore and Nanyang Technological University, Singapore, have now developed a method for using nanostructures to increase the fraction of incoming light that is absorbed by a light-harvesting material. The method is ideal for use with high-efficiency .

Solar cells absorb packets of optical energy called photons and then use the photons to generate electrons. The energy of some photons from the Sun, however, is too small to create electrons in this way and so is lost. Liu, Tok and their co-workers circumvented this loss using an effect known as upconversion. In this process, two low-energy photons are combined to produce a single high-energy photon. This energetic photon can then be absorbed by the active region of the solar cell.

The researchers' device comprised a titanium oxide frame filled with a regular arrangement of air pores roughly half a micrometer across—a structure called an inverse opal (see image). Spheres of the upconversion material, which were 30 nanometers in diameter, sat on the surface of these pores. Tiny light-sensitive made of crystals of coated these nanospheres.

The quantum dots efficiently absorbed incoming light, either directly from an external source or from unconverted photons from the nanospheres, and converted it to electrons. This charge then flowed into the titanium oxide frame. "The inverse opal creates a continuous electron-conducting pathway and provides a large interfacial surface area to support the upconversion nanoparticles and the quantum dots," explains Liu.

Liu, Tok and the team tested the device by firing laser light at it with a wavelength of 980 nanometers, which is not normally absorbed by cadmium selenide quantum dots. As expected, they were able to measure a much higher than the same experiment performed with a device without the upconversion nanospheres. "We believe that the enhanced energy transfer and light harvesting may afford a highly competitive advantage over conventional ," says Liu.

Explore further: 'Giant' charge density disturbances discovered in nanomaterials

More information: Su, L. T., Karuturi, S. K., Luo, J., Liu, L., Liu, X. et al. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Advanced Materials 25, 1603–1607 (2013). dx.doi.org/10.1002/adma.201204353

add to favorites email to friend print save as pdf

Related Stories

New nanomaterial increases yield of solar cells

Aug 26, 2013

Researchers from the FOM Foundation, Delft University of Technology, Toyota Motor Europe and the University of California have developed a nanostructure with which they can make solar cells highly efficient. ...

Two for one in solar power

Nov 17, 2013

Solar cells offer the opportunity to harvest abundant, renewable energy. Although the highest energy light occurs in the ultraviolet and visible spectrum, most solar energy is in the infrared. There is a ...

Recommended for you

Protons fuel graphene prospects

16 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.