Nanotech drug smugglers

November 12, 2013

Tiny capsules of carbon are invisible to the chemical gatekeeper that flushes potentially harmful substances out of our bodies' cells, according to research published in the International Journal of Computational Biology and Drug Design. The finding might allow a pharmaceutical to be smuggled into cells even when multidrug resistance has evolved.

Sergey Shityakov and Carola Förster of the University of Würzburg, Germany, explain that the protein, P-glycoprotein, acts as a gatekeeper, flushing out potentially harmful chemicals that enter the body as well as the naturally-occurring products of metabolism. The protein thus plays a vital role in the health of the cell. Unfortunately, it is a strong modulator of chemical traffic across the that it can also prevent therapeutic agents from working properly, flushing them out as if they were simply . This process underpins the emergence of in several diseases, including various forms of cancer.

Shityakov and Förster have revealed recently that if there were a way to mask the presence of the therapeutic agent, later the gatekeeper would not see them as "unwanted molecular entities" to be eradicated, and therefore, these drugs might be able to carry out their job unhindered and so overcome . However, some of the chemical substances have turned to the realm of nanotechnology, and in particular, tiny capsules of carbon atoms known as fullerenes and the related molecules, the carbon nanotubes. The latter synthetic materials are not recognized by P-glycoprotein and so can penetrate lipid membranes moving freely in and out of cells.

The team has investigated whether it might be possible to carry drug molecules inside these nanocapsules so that they are unimpeded by interactions with P-glycoprotein or other receptors. They used high-power computational techniques to demonstrate that carbon nanotubes are not able to "dock" with the gatekeeper protein. Moreover, their analysis of the binding energy needed to push a nanotube into P-glycoprotein shows that the process is unfavourable and so rather than "docking" with this gatekeeper protein these peculiar materials are repelled by it to maintain the interior of the cell and so have the potential to act as a molecular drug smuggler.

Explore further: SMU biochemists super-compute a cancer drug

More information: "Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study" in Int. J. Computational Biology and Drug Design, 2013, 6, 343-357, DOI: 10.1504/IJCBDD.2013.056801

Related Stories

SMU biochemists super-compute a cancer drug

June 7, 2012

When chemotherapy fails to halt the spread of cancer, it is typically because new super cells develop resistance to the chemotherapy. Instead of dying off, the cells reject the medicine, are able to pump it out and continue ...

Researchers make a case for free fatty acids

October 22, 2013

The current global epidemic of obesity-linked diabetes and its associated consequences -cardiovascular, neurological and renal diseases - is a growing public health problem for which therapeutic options are limited.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.