Moon mission beams laser data to ESA station

Nov 03, 2013
The first LADEE laser signal was acquired by ESA’s Optical ground Station, Tenerife, Spain, at 06:36 GMT on 26 October 2013. The light beam from the Moon was transmitted at 1550 nm wavelength. Credit: ESA

(Phys.org) —ESA's ground station on the island of Tenerife has received laser signals over a distance of 400 000 km from NASA's latest Moon orbiter. The data were delivered many times faster than possible with traditional radio waves, marking a significant breakthrough in space communications.

The Lunar Atmosphere and Dust Environment Explorer, or LADEE, was launched on 7 September and arrived in orbit around the Moon in October. In addition to probing the Moon's environment, it's also carrying a new laser terminal.

This new approach promises data speeds far superior to traditional radio waves used today by satellites and ground stations, including the Agency's Estrack network.

ESA's Optical Ground Station in Spain's Canary Islands was upgraded with an advanced laser terminal developed in Switzerland and Denmark that can communicate with LADEE using highly focused beams.

"We acquired the first signals from LADEE on 26 October, and since then, we've had a series of optical uplinks and downlinks providing extremely fast laser communications," says Zoran Sodnik, ESA's project manager for the laser effort.

"We've already received data at up to 40 Mbit/s – several times faster than a typical home broadband connection."

The contact with Tenerife came just days after LADEE made history on 18 October in the first-ever laser transmission from lunar orbit, picked up by a NASA station at White Sands, New Mexico, USA. The craft is also transmitting to a third station, at NASA's Jet Propulsion Laboratory in California.

Laser communications at near-infrared wavelengths may be the way of the future when it comes to downloading massive amounts of data from spacecraft orbiting Earth, Mars or even more distant planets.

Laser communication units are lighter and smaller than today's onboard radio systems, promising to cut mission costs and provide opportunities for new science payloads.

"The participation of the ESA ground terminal at Tenerife in NASA's project is an important milestone in this new capability," said Badri Younes, deputy associate administrator for and navigation at NASA's Headquarters in Washington DC.

"Together, we have demonstrated at the very beginning of the optical communication era the value of interoperable communication between our space agencies."

With the first two communication passes with LADEE on 26 October and six more to 29 October, the ESA team on Tenerife are tweaking the station hardware – especially for the uplink – and improving procedures.

"Some initial difficulties with the extremely accurate pointing necessary for communication are being investigated, but this is quite normal at this stage," says ESA's Klaus-Juergen Schulz, responsible for ground station systems at the European Space Operations Centre, Darmstadt, Germany.

"We are already confident that the test campaign will confirm the practicality of high-data-rate optical links for future missions."

During the coming weeks, ESA engineers will test uplink communications at 20 Mbit/s and obtain accurate 'time-of-travel' measurements to be used for calculating the spacecraft's orbit.

Using special equipment from the DLR German Aerospace Center's Institute for Communication and Navigation, the team will monitor atmospheric conditions during transmission and learn how to improve performance even further.

Explore further: Laser communications set for Moon mission

More information: www.esa.int/Our_Activities/Operations/More_information_-_laser_communication_project

add to favorites email to friend print save as pdf

Related Stories

Laser communications set for Moon mission

Jul 30, 2013

An advanced laser system offering vastly faster data speeds is now ready for linking with spacecraft beyond our planet following a series of crucial ground tests. Later this year, ESA's observatory in Spain ...

Space laser to prove increased broadband possible

Aug 28, 2013

When NASA's Lunar Laser Communication Demonstration (LLCD) begins operation aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission managed by NASA's Ames Research Center in Moffett Field, ...

NASA's OPALS to beam data from space via laser

Jul 11, 2013

(Phys.org) —NASA will use the International Space Station to test a new communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission ...

Recommended for you

Kazakh satellite to be launched into orbit

6 hours ago

Kazakhstan's first-ever Earth observation satellite is to be fired into orbit next week from the European spaceport in Kourou in French Guiana, launch company Arianespace said.

Habitable exoplanets are bad news for humanity

8 hours ago

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

First-of-its-kind NASA space-weather project

Apr 23, 2014

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

User comments : 0

More news stories

Habitable exoplanets are bad news for humanity

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

Professional and amateur astronomers join forces

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

Kazakh satellite to be launched into orbit

Kazakhstan's first-ever Earth observation satellite is to be fired into orbit next week from the European spaceport in Kourou in French Guiana, launch company Arianespace said.