Enhancing microalgae growth to boost green energy production

Nov 06, 2013
Enhancing microalgae growth to boost green energy production
SA Premier’s Professorial Research Fellow in Clean Technology Colin Raston

(Phys.org) —A groundbreaking nanoparticle system which stimulates the growth of microalgae – a valuable resource used in the production of biofuels and medical compounds – has been developed by a team of Australian scientists, including Flinders University clean technology expert Professor Colin Raston.

The technique, developed in collaboration with researchers from the University of Western Australia, creates an optical nanofilter which enhances the formation and yield of algae photopigments, namely chlorophyll, by altering the absorbed by the algae.

Using algae growing in flasks, the scientists surrounded the flasks with a solution of gold and silver that were tweaked in size and composition to harness wavelengths most favourable for microalgae growth and formation of photopigments.

While light is essential for , too much light, or certain wavelengths of light, can damage the algae and inhibit growth.

Professor Raston, the SA Premier's Professorial Research Fellow in Clean Technology, said the novel technique enhances the wavelengths reaching the algae which involves "backscattering" of wavelengths which the algae can use, resulting in improved growth.

"It's not as simple as increasing light intensity because the algae will bleach and get toxic stress through the accumulation of oxygen," Professor Raston said.

"But by putting light in the nanoparticles at a wavelength the algae can handle it matches the light the algae are using in the flask, and the algae then absorbs that light which stimulates growth," he said.

"The system uses nanoparticles placed in a separate flask on the outside of the algae flask which means the nanoparticles are not in direct contact with the algae, therefore avoiding any toxicological issues and contamination."

Microalgae is a valuable marine resource used to generate bioenergy and biomass, which has a variety of environmentally sustainable applications including biofuels, medical antioxidants and anti-inflammatory agents, natural food and soap colourants, cosmetic agents and feed supplements in aquaculture.

Professor Raston said the new technique could ultimately boost the production of commercially viable products.

"The speed and efficiency at which microalgae grow is currently limiting them from being turned into commercially viable products so it's hoped that if we can increase the yield of algae we can produce valuable algae-to-energy products at a much faster rate.

"It's a significant advancement in developing technologies to optimise the growth of for renewable fuels, specialty chemicals and value-added chemical compounds for applications in the pharmaceutical industry."

The research – undertaken in collaboration with Dr Ela Eroglu, Dr Paul Eggers and Winthrop Professor Steven Smith from the University of Western Australia – has just been published in the international peer-reviewed journal Green Chemistry.

Explore further: Light nanofilter system worth its weight in gold and silver

More information: pubs.rsc.org/en/Content/ArticleLanding/2013/GC/c3gc41291a#!divAbstract

Related Stories

Biofuel from human urine

Sep 30, 2013

Micro-algae can grow on undiluted human urine. This offers opportunities for new water purification methods and perhaps even for converting urine into usable chemical substances and biofuels.

Aussie algae fuel green oil hope

Jul 24, 2013

Newly trialled native algae species provide real hope for the development of commercially viable fuels from algae, a University of Queensland scientist has found.

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

23 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...