50 meters of optical fiber shrunk to the size of microchips

Nov 28, 2013
Ultra-low loss, true-time delay chip developed at the University of California, Santa Barbara with four different delay lines.

Long coils of optical waveguides any structure that can guide light, like conventional optical fiber can be used to create a time delay in the transmission of light. Such photonic delays are useful in military application ranging from small navigation sensors to wideband phased array radar and communication antennas. Although optical fiber has extremely low signal loss, an advantage that enables the backbone of the global Internet, it is limited in certain photonic delay applications. Connecting fiber optics with microchip-scale photonic systems requires sensitive, labor-intensive assembly and a system with a large number of connections suffers from signal loss. DARPA-funded researchers developed new methods to integrate long coils of waveguides with low signal loss onto microchips potentially enabling a leap ahead in size reduction and performance.

DARPA's integrated Photonic Delay (iPhoD) program created a new class of photonic waveguides with losses approaching that of . The new waveguides are built onto microchips and include up to 50 meters of coiled material that is used to delay light. Conventional fiber optic coils of the same length would be about the size of a small juice glass. These waveguides also employ modern silicon processing to achieve submicron precision and more efficient manufacturing. The result is a new component that is smaller and more precise than anything before in its class.

"Prior to the start of iPhoD, the best integrated waveguides had a signal loss of about 1 decibel per meter with total lengths of only a few meters," said Josh Conway, DARPA program manager. "Under iPhoD, two research teams created chips with loss around 0.05 decibels per meter. The submillimeter bend diameter, which describes how tightly the waveguide can coil without significant signal loss, allowed the demonstration of a 50-meter optical delay on a single microchip."

iPhoD concluded recently with successful demonstrations by research teams led by the University of California, Santa Barbara (UCSB) and the California Institute of Technology (CalTech).

iPhoD waveguide from the California Institute of Technology.

The ultra-low loss, true-time delay chip developed at UCSB is composed of silicon nitride. Selecting this material may allow for integration with a variety of devices and materials thereby reducing size, weight and power requirements of an overall system. UCSB researchers also demonstrated 3D waveguide stacking, enabling more waveguide length, and thus, longer photonic delays.

Researchers at CalTech had a different approach for a chip-scale waveguide, as reported in a Nature Communications paper, "Ultra-low-loss optical delay line on a silicon chip." The CalTech waveguide was constructed from silicon oxide, commonly known as glass, and demonstrated low loss over 27 meters.

"These results are firsts for with performance that is equal or superior to larger, fiber optic-based devices," added Conway. "Chip-scale waveguides, with smaller sizes and new integration possibilities promise advanced, compact military systems such as tactical gyroscopes that significantly outperform state-of-the-art MEMS devices with the same footprint."

Explore further: Novel hollow-core optical fiber to enable high-power military sensors

add to favorites email to friend print save as pdf

Related Stories

On-chip quantum buffer realized

Nov 13, 2013

Nippon Telegraph and Telephone Corp. has realized a quantum buffer integrated on an optical waveguide. The buffer is based on the "slow light effect", where the propagation speed of a pulsed light in a special ...

Recommended for you

Robotics goes micro-scale

Apr 17, 2014

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Egleton
not rated yet Nov 28, 2013
A fiber is a "photonic wave guide" with low loss. So what are we talking about here?
A coiled material up to 50m in length that delays light with low losses and can fit on a chip.
The rest must be a secret.

More news stories

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...