Infrared vision lets researchers see through—and into—multiple layers of graphene

Nov 21, 2013 by Charlotte Hsu
The direction that a light wave is oscillating changes as the wave is reflected by a sheet of graphene. This changing direction of oscillation -- also known as polarization -- enabled researchers to identify the electronic properties of multiple sheets of graphene stacked atop one another -- even when they were covering each other up. Credit: Chul Soo Kim, U.S. Naval Research Laboratory

(Phys.org) —It's not X-ray vision, but you could call it infrared vision.

A University at Buffalo-led research team has developed a technique for "seeing through" a stack of sheets to identify and describe the of each individual sheet—even when the sheets are covering each other up.

The method involves shooting a beam of infrared at the stack, and measuring how the light wave's direction of oscillation changes as it bounces off the layers within.

To explain further: When a magnetic field is applied and increased, different types of graphene alter the direction of oscillation, or , in different ways. A graphene layer stacked neatly on top of another will have a different effect on polarization than a graphene layer that is messily stacked.

"By measuring the polarization of reflected light from graphene in a magnetic field and using new analysis techniques, we have developed an ultrasensitive fingerprinting tool that is capable of identifying and characterizing different graphene multilayers," said John Cerne, PhD, UB associate professor of physics, who led the project.

The technique allows the researchers to examine dozens of individual layers within a stack.

Graphene, a nanomaterial that consists of a single layer of carbon atoms, has generated huge interest due to its remarkable fundamental properties and technological applications. It's lightweight but also one of the world's strongest materials. So incredible are its characteristics that it garnered a Nobel Prize in Physics in 2010 for two scientists who pioneered its study.

Cerne's new research looks at graphene's electronic properties, which change as sheets of the material are stacked on top of one another. The findings appeared Nov. 5 in Scientific Reports, an online, open-access journal produced by the publishers of Nature.

Cerne's collaborators included colleagues from UB and the U.S. Naval Research Laboratory.

So, why don't all graphene layers affect the polarization of light the same way?

Cerne says the answer lies in the fact that different layers absorb and emit light in different ways.

The study showed that absorption and emission patterns change when a magnetic field is applied, which means that scientists can turn the polarization of light on and off either by applying a to graphene layers or, more quickly, by applying a voltage that sends electrons flowing through the graphene.

"Applying a voltage would allow for fast modulation, which opens up the possibility for new optical devices using graphene for communications, imaging and signal processing," said first author Chase T. Ellis, a former graduate research assistant at UB and current postdoctoral fellow at the Naval Research Laboratory.

Explore further: Elucidation of spin state of conduction electrons in graphene

More information: www.nature.com/srep/2013/131105/srep03143/full/srep03143.html

Related Stories

Topographical approaches to measuring graphene thickness

Sep 28, 2012

(Phys.org)—Graphene has long shown potential for use in electronics, but difficulties in producing the material to a high enough quality has so far prevented the commercialisation of graphene-based devices.

Photonics: Graphene boosts on-chip light detectors

Sep 16, 2013

The fabrication of high-performance light detectors—important for computers and mobile devices—using graphene integrated onto a chip is reported in three independent studies published online this week ...

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Static
not rated yet Nov 21, 2013
Pro tip: "It's not x-ray vision, but it could be called heat vision"

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...