High purity plastics greatly improve the propagation of radiation-induced light

November 8, 2013
High purity plastics greatly improve the propagation of radiation-induced light
Highly-purified Polystyrene

Japanese researchers have reported major improvements in the propagation of light generated by radiation in highly purified plastics. The research was published in the issue of Applied Physics Letters on October 16, 2013.

Plastics that emit light when exposed to radiation are widely used in particle and nuclear physics experiments, and have been integral to radiation measurements in decontamination operations such as that in Fukushima Prefecture. A better understanding of the behavior of light emitted by plastics because of radiation will enable improved measurements of radiation or radioactivity.

This research team manufactured high-purity (>99.9%) polystyrene plastic that exhibits a much greater propagation distance for ultraviolet light than that of general-use polystyrene. Additionally, in-depth analysis of the ultraviolet revealed that values for the refractive index that were based on the longer-wavelength sodium D-line (589nm) were inaccurate. Instead, the team calculated a highly reliable and much more accurate "effective refractive index" that considers the wavelength distribution of light generated by the radiation.

These findings will contribute significantly at the fundamental level to the design of light propagation in radiation measurement devices, and will have far-reaching effects from particle physics experiments to optical fibers (e.g., scintillation fibers or wavelength shifters) that are used in high-performance radiation measurements and decontamination cleanup.

Research Methods and Findings

Basic data that characterizes the propagation of light generated by radiation includes the light attenuation length (defined as the distance in which the light intensity decreases by 0.36), the reflectivity, and the refractive index. The attenuation length of in normal polystyrene plastic is only 1mm. The research team produced highly-purified polystyrene (>99.9%) to study in greater detail the behavior of light produced by radiation. The attenuation length of the highly purified polystyrene was much longer (41.6mm) than that found in general-use polystyrene. Additionally, the group devised a mathematical function that goes beyond the standard index based on the sodium D-line and describes an "Effective Refractive Index" (Neff=1.67) that considers the entire spectrum of light generated by radiation. By doing so, they can increase the accuracy in radiation measurements. This function is generally applicable to other materials that generate light.

Spillover Effects

This research has provided a better understanding of the behavior of light in plastics, and a more comprehensive understanding of the nature of light produced by radiation. In particular, applications using plastic optical fibers have dramatically improved the reliability of data based on outputted values, as well as in the initial values that are used in simulations to replicate the behavior of . Thus, higher performance can now be realized for the measurement of radiation or radioactivity.

Explore further: Photon amplification, emission observed in plastic scintillation materials

More information: Hidehito Nakamura, Yoshiyuki Shirakawa, Hisashi Kitamura, Nobuhiro Sato, Osamu Shinji, Katashi Saito and Sentaro Takahashi. "Light propagation characteristics of high-purity polystyrene." Applied Physics Letters, 103, 161111 (2013)dx.doi.org/10.1063/1.4824467

Related Stories

Heat radiation of small objects: Beyond Planck's equations

July 10, 2013

Objects that are smaller than the wavelength of thermal radiation cannot radiate heat efficiently. A generalized theory of thermal radiation has now been experimentally confirmed at the level of a single object at the Vienna ...

Improving light and heat spectra measurements

October 30, 2013

Whether you want to investigate objects in space, characterize the quality of light sources, optimize photovoltaics modules or analyze chemical compounds, measuring the spectrum of light- or heat sources is often the method ...

The world's most powerful terahertz quantum cascade laser

October 30, 2013

Terahertz radiation has many applications—but high intensity terahertz radiation sources are hard to build. A team of researchers at TU Vienna has now managed to create a new kind of quantum cascade laser with an output ...

Solar cells utilize thermal radiation

November 4, 2013

Thermal radiation from the sun is largely lost on most silicon solar cells. Up-converters transform the infrared radiation into usable light, however. Researchers have now for the first time successfully adapted this effect ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.