Green isoprene closer to reality

Nov 08, 2013
A new transcriptomics-based model that accurately predicts how much isoprene the bacterium Bacillus subtilis will produce represents a step toward using bacteria as a clean, renewable fuel source.

(Phys.org) —With an eye toward maximizing isoprene production in bacteria, scientists at Pacific Northwest National Laboratory and Washington State University sought to understand isoprene regulation in Bacillus subtilis, a bacterium typically found in soil that naturally produces more isoprene than other microbes. Potentially, industrial quantities of isoprene, a volatile liquid currently derived from oil used for aviation fuel and industrial applications, could be derived from bacteria. Like plant and animal cells, bacteria produce isoprene in small amounts to serve important signaling and structural roles. The researchers' result was a new, transcriptomics-based model that accurately predicts how much isoprene B. subtilis will produce when stressed or nourished.

This model marks a step toward understanding how environmental changes affect gene expression and, in turn, production by the bacterium. This fundamental insight into isoprene regulation in bacteria is advancing synthetic biology approaches to engineer microbes that produce isoprene, as well as other high-value metabolites.

The team treated B. subtilis with 30 different chemical stressors and nutrients that alter isoprene production then analyzed the expression of more than 4100 . Transcriptomics data showed that of the 4100 genes, 213 genes influenced, or regulated, isoprene production.

With these 213 genes, the team built a statistical model that accurately predicts isoprene production levels in B. subtilis under different conditions, indicating that transcriptomics measurements alone can provide the necessary information to understand what cellular states are conducive to making isoprene.

Researchers will use this knowledge to identify the pathways that contribute to higher or lower levels of isoprene and potentially manipulate these pathways to produce high isoprene producing strains of .

Explore further: How do our muscles work? Scientists reveal important new insights into muscle protein

More information: Hess BM, J Xue, LM Markillie, RC Taylor, HS Wiley, BK Ahring, and B Linggi. 2013. "Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics." PLoS ONE 8(6):e66104. DOI: 10.1371/journal.pone. 0066104

Related Stories

Vital role for bacteria in climate-change gas cycle

Mar 29, 2010

Isoprene is a Jekyll-and-Hyde gas that is capable of both warming and cooling the Earth depending on the prevailing conditions. It is an important industrial gas, necessary for the manufacture of important ...

How the detergent of the atmosphere is regenerated

Oct 06, 2013

It sounds unlikely: a washing machine recycles used detergent in order to use it again for the next load of dirty washing. But this is just what happens during the degradation of pollutants in the atmosphere. ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

13 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.