Green isoprene closer to reality

November 8, 2013
A new transcriptomics-based model that accurately predicts how much isoprene the bacterium Bacillus subtilis will produce represents a step toward using bacteria as a clean, renewable fuel source.

(Phys.org) —With an eye toward maximizing isoprene production in bacteria, scientists at Pacific Northwest National Laboratory and Washington State University sought to understand isoprene regulation in Bacillus subtilis, a bacterium typically found in soil that naturally produces more isoprene than other microbes. Potentially, industrial quantities of isoprene, a volatile liquid currently derived from oil used for aviation fuel and industrial applications, could be derived from bacteria. Like plant and animal cells, bacteria produce isoprene in small amounts to serve important signaling and structural roles. The researchers' result was a new, transcriptomics-based model that accurately predicts how much isoprene B. subtilis will produce when stressed or nourished.

This model marks a step toward understanding how environmental changes affect gene expression and, in turn, production by the bacterium. This fundamental insight into isoprene regulation in bacteria is advancing synthetic biology approaches to engineer microbes that produce isoprene, as well as other high-value metabolites.

The team treated B. subtilis with 30 different chemical stressors and nutrients that alter isoprene production then analyzed the expression of more than 4100 . Transcriptomics data showed that of the 4100 genes, 213 genes influenced, or regulated, isoprene production.

With these 213 genes, the team built a statistical model that accurately predicts isoprene production levels in B. subtilis under different conditions, indicating that transcriptomics measurements alone can provide the necessary information to understand what cellular states are conducive to making isoprene.

Researchers will use this knowledge to identify the pathways that contribute to higher or lower levels of isoprene and potentially manipulate these pathways to produce high isoprene producing strains of .

Explore further: Isoprene emission from plants -- a volatile answer to heat stress

More information: Hess BM, J Xue, LM Markillie, RC Taylor, HS Wiley, BK Ahring, and B Linggi. 2013. "Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics." PLoS ONE 8(6):e66104. DOI: 10.1371/journal.pone. 0066104

Related Stories

Vital role for bacteria in climate-change gas cycle

March 29, 2010

Isoprene is a Jekyll-and-Hyde gas that is capable of both warming and cooling the Earth depending on the prevailing conditions. It is an important industrial gas, necessary for the manufacture of important compounds such ...

Researchers pinpoint how trees play role in smog production

April 25, 2013

After years of scientific uncertainty and speculation, researchers at the University of North Carolina at Chapel Hill show exactly how trees help create one of society's predominant environmental and health concerns: air ...

How the detergent of the atmosphere is regenerated

October 6, 2013

It sounds unlikely: a washing machine recycles used detergent in order to use it again for the next load of dirty washing. But this is just what happens during the degradation of pollutants in the atmosphere. German scientists ...

Recommended for you

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.