Gravity and the robot satellite attitude problem

Nov 04, 2013

Using an in-orbit robot to capturing a malfunctioning satellite that is tumbling out of control is currently just a theoretical idea. However, research inspired by nature to be published in the forthcoming issue of International Journal of Mechanisms and Robotic Systems, could take us a small step towards making such science fiction science fact.

Angel Flores-Abad and Ou Ma of the Department of Mechanical and Aerospace Engineering, at New Mexico State University, in Las Cruces, explain that capturing a non-cooperative tumbling object in space, such as malfunctioning for repairing, refueling or towing, is increasingly of interest to space agencies. Unfortunately, the nature of orbital motion and the effects of gravity obeying Newton's Laws of Motion mean that a attempting to reach and grab such a tumbling object will succumb to changes in its own inertia that could either damage the equipment or result in the servicing vehicle itself which is the base of the going out of control.

To find a solution to this problem, the team has turned to the way animals, including humans, naturally plot an approach trajectory based on the visual observation of the moving object - usually prey - and capture it. Their mathematical analysis offers a naturalistic way for a robot arm to reach and capture a tumbling satellite where impact forces between the two are minimal so that neither the stability of the servicing craft is disrupted nor the damaged by the impact. The analysis also allows the connection between the robot hand and the captured object to occur in such a way that the resulting net contact force passes right through or as close as possible to the center of mass of the servicing vehicle and the robot combined system..

The team has studied their newly proposed technology using computer simulations. They simulated a rescue mission and demonstrated how capture can occur with zero relative velocity between the robot hand and tumbling satellite with a minimal contact force. They are developing a robotics test bed to experimentally investigate the new technology. Once the technology is tested in the lab with simulated space conditions, it can be proposed for demonstration in a real mission.

Explore further: Flying robots get off the ground

More information: "Bio-inspired approach for a space manipulator to capture a tumbling object with minimal impact force" in Int. J. Mechanisms and Robotic Systems, 2013, 1, 331-348

Related Stories

Flying robots get off the ground

Jun 17, 2013

Attaching a platform to a high-rise building to evacuate people in an emergency, or creating a landing stage for an aircraft on uneven terrain - these are just two areas in which flying robots could have ...

Synchronized tumbling: how to catch a retired satellite

Aug 30, 2012

In space, there are no brakes. Active satellites and spacecraft achieve controlled movement with thrusters. Retired satellites, on the other hand, no longer controlled from Earth, tumble in their orbits through ...

Recommended for you

A robot dives into search for Malaysian Airlines flight

18 hours ago

In the hunt for signs of Malaysian Airlines flight MH370—which disappeared on March 8 after deviating for unknown reasons from its scheduled flight path—all eyes today turn to a company that got its start ...

Simplicity is key to co-operative robots

Apr 16, 2014

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Students turn $250 wheelchair into geo-positioning robot

Apr 16, 2014

Talk about your Craigslist finds! A team of student employees at The University of Alabama in Huntsville's Systems Management and Production Center (SMAP) combined inspiration with innovation to make a $250 ...

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

User comments : 0

More news stories

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...