Global warming in the Canadian Arctic

Nov 18, 2013

Ph.D. student Karita Negandhi and professor Isabelle Laurion from INRS'Eau Terre Environnement Research Centre, in collaboration with other Canadian, U.S., and French researchers, have been studying methane emissions produced by thawing permafrost in the Canadian Arctic. These emissions are greatly underestimated in current climate models. Their findings, published in the journal PLOS ONE, illustrate the importance of taking into account greenhouse gases emitted by small thaw ponds, as they could have a significant impact on climate.

"We discovered that although the small shallow ponds we studied represent only 44% of the water-covered surface in a Bylot Island valley, they generate 83% of its ," notes water sciences doctoral student Karita Negandhi.

The researchers compared ponds of different shapes and sizes, and studied their physicochemical properties and microbial ecology. To analyze the samples taken on Bylot Island in Nunavut's Sirmilik National Park, they used various methods, including radiocarbon dating, as well as new-generation molecular tools to study the sediment and water microbial communities involved in carbon transformation processes.

The isotopic signatures of the methane emitted by these small ponds indicate that this comes partly from old carbon reserves that have been sequestered in the for millennia. As the permafrost thaws, organic matter is becoming more abundant, promoting the proliferation of aquatic microbes such as methanogenic Archaea, which use various sources of carbon, then release it into the atmosphere in the form of methane and CO2. Consequently, longer summers could lead to an increase in these emissions.

These small thaw ponds have been studied very little up until now, primarily because of their remote location and the attendant logistical constraints. However in the context of global warming, they are worth examining more closely, as they could have an increasingly significant incidence on the transfer of into the atmosphere in the future.

Explore further: Block cropping pitted against integration method

More information: The article entitled "Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic" appeared in PLOS ONE on November 13, 2013.

Related Stories

New knowledge about permafrost improving climate models

Jul 28, 2013

New research findings from the Centre for Permafrost (CENPERM) at the Department of Geosciences and Natural Resource Management, University of Copenhagen, document that permafrost during thawing may result in a substantial ...

Abrupt permafrost thaw increases climate threat

Nov 30, 2011

As the Arctic warms, greenhouse gases will be released from thawing permafrost faster and at significantly higher levels than previous estimates, according to survey results from 41 international scientists ...

Recommended for you

Life in the poisonous breath of sleeping volcanos

6 minutes ago

Researchers of the University Jena analyze the microbial community in volcanically active soils. In a mofette close to the Czech river Plesná in north-western Bohemia, the team around Prof. Dr. Kirsten Küsel ...

Eggs and chicken instead of beef reap major climate gains

53 minutes ago

Beef on our plates is one of the biggest climate villains, but that does not mean we have to adopt a vegan diet to reach climate goals. Research results from Chalmers University of Technology show that adopting ...

Local action needed to protect nature from global warming

3 hours ago

Stronger local management can increase the resilience of nature to the impacts of climate change, writes an international team of researchers in Science. The authors examined three UNESCO World Heritage Sites: ...

Deforestation is messing with our weather and our food

3 hours ago

Today, the National Socio-Environmental Synthesis Center (SESYNC) at the University of Maryland published new research in Nature Communications providing insight into how large-scale deforestation could ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.