Geoscientists building whole-Earth model for long-term climate clues

Nov 01, 2013
A Rice University-based team of geoscientists is going to great lengths -- from Earth's core to its atmosphere -- to investigate the role that deep-Earth processes play in climate evolution over million-year timescales. Credit: Rice University

A Rice University-based team of geoscientists is going to great lengths—from Earth's core to its atmosphere—to get to the bottom of a long-standing mystery about the planet's climate.

"We want to know what controls long-term climate change on Earth, the oscillations between greenhouse and icehouse cycles that can last as long as tens of million years," said Cin-Ty Lee, professor of Earth science at Rice and the principal investigator (PI) on a new $4.3 million, five-year federal grant from the National Science Foundation's Frontiers in Earth-System Dynamics (FESD) Program.

"There are long periods where Earth is relatively cool, like today, where you have ice caps on the North and South poles, and there are also long periods where there are no ," Lee said. "Earth's climate has oscillated between these two patterns for at least half a billion years. We want to understand what controls these oscillations, and we have people at universities across the country who are going to attack this problem from many angles."

For starters, Lee distinguished between the type of climate change that he and his co-investigators are studying and the anthropogenic climate change that often makes headlines.

"We're working on much longer timescales than what's involved in anthropogenic ," Lee said. "We're interested in explaining processes that cycle over tens of millions of years."

Lee described the research team as "a patchwork of free spirits" that includes bikers, birdwatchers and skateboarders who are drawn together by a common interest in studying the whole Earth dynamics of carbon exchange. The group has specialists in oceanography, petrology, geodynamics, biogeochemistry and other fields, and it includes more than a dozen faculty and students from the U.S., Europe and Asia. Rice co-PIs include Rajdeep Dasgupta, Gerald Dickens and Adrian Lenardic.

The team will focus on how carbon moves between Earth's external and internal systems. On the external side, carbon is known to cycle between oceans, atmosphere, biosphere and soils on timescales ranging from a few days to a few hundred thousand years. On million-year to billion-year timescales, carbon in these external reservoirs interacts with reservoirs inside Earth, ranging from crustal carbon stored in ancient sediments preserved on the continents to carbon deep in Earth's mantle.

"Because of these differences in timescales, carbon cycling at Earth's surface is typically modeled independently from deep-Earth cycling," Lee said. "We need to bring the two together if we are to understand long-term greenhouse-icehouse cycling."

From the fossil record, scientists know that atmospheric carbon dioxide plays a vital role in determining Earth's surface temperatures. Many studies have focused on how carbon moves between the atmosphere, oceans and biosphere. Lee said the FESD team will examine how carbon is removed from the surface and cycled back into the deep Earth, and it will also examine how volcanic eruptions bring carbon from the deep Earth to the surface. In addition, the team will examine the role that volcanic activity and plate tectonics may play in periodically releasing enormous volumes of carbon dioxide into the atmosphere. One of several hypotheses that will be tested is whether Earth's subduction zones may at times be dominated by continental arcs, and if so, whether the passage of magmas through ancient carbonates stored in the continental upper plate can amplify the volcanic flux of carbon.

"Long-term climate variability is intimately linked to whole-Earth cycling," Lee said. "Our task is to build up a clearer picture of how the inputs and outputs change through time."

In addition to the Rice team, the project's primary investigators include Jaime Barnes of the University of Texas at Austin, Jade Star Lackey of Pomona College, Michael Tice of Texas A&M University and Richard Zeebe of the University of Hawaii. Research affiliates include Steve Bergman of Shell, Mark Jellinek of the University of British Columbia, Tapio Schneider of the Swiss Federal Institute of Technology and Yusuke Yokoyama of the University of Tokyo.

Explore further: Meteorite study suggests Mars' ancient atmosphere may be locked in its rocky terrain

add to favorites email to friend print save as pdf

Related Stories

Volcano location could be greenhouse-icehouse key

Feb 07, 2013

(Phys.org)—A new Rice University-led study finds the real estate mantra "location, location, location" may also explain one of Earth's enduring climate mysteries. The study suggests that Earth's repeated ...

Water in stratosphere plays key role in Earth's climate

Oct 03, 2013

Water vapor changes in the stratosphere contribute to warmer temperatures and likely play an important role in the evolution of Earth's climate, says a research team led by a Texas A&M University professor.

Recommended for you

The ocean's living carbon pumps

15 hours ago

When we talk about global carbon fixation – "pumping" carbon out of the atmosphere and fixing it into organic molecules by photosynthesis – proper measurement is key to understanding this process. By ...

User comments : 7

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1.2 / 5 (17) Nov 01, 2013
"There are long periods where Earth is relatively cool, like today, where you have ice caps on the North and South poles, and there are also long periods where there are no ice caps," Lee said. "Earth's climate has oscillated between these two patterns for at least half a billion years. We want to understand what controls these oscillations, and we have people at universities across the country who are going to attack this problem from many angles."

Didn't these fools get the memo? The IPCC has stated that humans are the cause for climate change!
cantdrive85
1.2 / 5 (17) Nov 01, 2013
What a novel approach, developing complete models in order to explain phenomena. There still is a major problem with this approach, what constitutes a complete model. And if the models "from Earth's core to its atmosphere" are wrong or incomplete then all they are creating is GIGO.
ForFreeMinds
1 / 5 (12) Nov 03, 2013
The ability to get funding to build such a model, is an acknowledgement that existing climate science models looking at climate change (formerly global warming) are not good models.
VendicarE
5 / 5 (2) Nov 03, 2013
"The IPCC has stated that humans are the cause for climate change!" - CantDriveTooStupid

Well, that isn't what the IPCC says.

Why does can'tdrive feel a need to lie about what the IPCC says.

Here are the radiative forcings that the IPCC have quantified....

http://upload.wik....svg.png
VendicarE
5 / 5 (2) Nov 03, 2013
"And if the models "from Earth's core to its atmosphere" are wrong or incomplete" - CanDriveTooStupid

There is still no model that includes all factors that cause friction.

According to TooStupid, all mechanics is therefore GIGO.

Not even morons believe him. So why does he say such stupid things?

Smells like FreeMindsFreeTard thinks there are a million invisible active volcanoes scattered all over the earth.

goracle
1 / 5 (9) Nov 04, 2013
"And if the models "from Earth's core to its atmosphere" are wrong or incomplete" - CanDriveTooStupid

There is still no model that includes all factors that cause friction.

According to TooStupid, all mechanics is therefore GIGO.

Not even morons believe him. So why does he say such stupid things?

Smells like FreeMindsFreeTard thinks there are a million invisible active volcanoes scattered all over the earth.


All thanks to the hard work of the Magratheans and my allied team of invisible volcano specialists. Muhahaha...
goracle
1 / 5 (9) Nov 04, 2013
The ability to get funding to build such a model, is an acknowledgement that existing climate science models looking at climate change (formerly global warming) are not good models.

False dichotomy. There is always room for improved detail in any given model. 'Bad' models (the ones that don't support your political view) and 'good' (the non-existent ones that you like) are not the only two choices. The only perfect model is the entire Earth, and you may have noticed that some of us are currently using it to breathe.