Five-dimensional crystallography probes molecular structure

Nov 26, 2013 by Nicola Parry
Structures of the intermediates IT, ICT, pR2, pB1 and the dark resting state of photoactive yellow protein on the main reaction pathway. Barriers of activation between the intermediates are determined by 5-D crystallography.

(Phys.org) —Successful development of new pharmaceuticals could be the payoff from five-dimensional crystallography, a new experimental technique employed by researchers carrying out studies at the BioCARS facility at the U.S. Department of Energy Office of Science's Advanced Photon Source (APS).

X-ray uses x-rays to investigate protein structure, and has played an increasingly important role in drug discovery in recent decades. This technique essentially represents a type of extremely high-resolution microscopy for investigating the molecular structure of proteins with near-atomic resolution. This facilitates improved understanding of their function, and provides vital structural information on specific protein targets. In this way it can contribute to the design of new drugs that target specific proteins, or to the engineering of enzymes for specific industrial processes.

Protein folding is the process by which a protein takes on a specific three-dimensional (3-D) structure essential for it to function. Many proteins, called enzymes, promote or catalyze specific . The 3-D structures of these proteins change during the course of the reactions. Free energy landscapes represent multidimensional hyper-surfaces that determine the progress of catalyzed reactions, and characterization of these landscapes allows the reaction to be described and visualized.

In time-resolved crystallography (TRX), x-ray diffraction by crystals is utilized to examine in real time the structures of proteins as they are changing and therefore improve understanding of their function and gain important structural information on specific protein targets.

Five-dimensional (5-D) crystallography is a specific form of the TRX technique where, in addition to space and time, temperature is a variable as well. It allows complete characterization of all features of a chemical reaction, including the structure of its intermediate compounds, as well as the reaction kinetics, and barriers of activation between the intermediates. It provides an essential and direct link between the structural changes and energy changes in the chemical reaction.

In this study, Marius Schmidt (University of Wisconsin-Milwaukee) and colleagues from the University of Wisconsin-Milwaukee, The University of Chicago, The Institute for Basic Science (Republic of Korea), and Korea Advanced Institute of Science and Technology (Republic of Korea) employed the photocycle reaction of photoactive yellow protein (PYP), a bacterial photosensor protein, as a model for 5-D crystallography. In this reaction, a sequence of light-induced structural changes in the protein produces distinct intermediate structures.

Using data sets collected from TRX experiments conducted on crystals of PYP at the BioCARS 14-ID beamline at the Argonne National Laboratory APS, the researchers investigated the effect of changing temperature on the kinetics of inter-conversion between intermediates formed during the photocycle. By lowering the temperature below 0o C, the rate of the chemical reactions slowed down, allowing an early intermediate like IT to be observed on the nanosecond time-scale (see figure), whereas it had previously only been evident using picosecond TRX.

The study also showed that from -40º C to +50º C, the reaction proceeded in a temperature-dependent manner. However, above 50º C, the optimum temperature for the reaction was exceeded, and its rate slowed down again. Most importantly, such temperature-dependent data allowed energies of activation between intermediates to be determined directly from x-ray data.

"Using the BioCARS beamline, time-resolved high-resolution Laue crystallographic data with 100-picosecond time resolution can be collected and analyzed swiftly with novel data collection and data processing strategies. Without this beamline and the support of the BioCARS staff, these experiments would have been impossible," Schmidt said.

Data from this study showed how 5-D crystallography may demonstrate energy changes associated with barriers of activation in the photocycle reaction of PYP. The results will be important in guiding future work to investigate changing energy landscapes of other enzymatic reactions, and may contribute to the development of novel drugs that target a specific protein.

Explore further: Tiny crystals could revolutionize structural biology studies

Related Stories

Watching a protein as it functions

Mar 15, 2013

(Phys.org) —When it comes to understanding how proteins perform their amazing cellular feats, it is often the case that the more one knows the less one realizes they know. For decades, biochemists and biophysicists ...

Shedding light on chemistry with a biological twist

Mar 15, 2013

(Phys.org) —Many of life's processes rely on light to trigger a chemical change. Photosynthesis, vision, the movement of light-seeking or light-avoiding bacteria, for instance, all exploit photochemistry. ...

New analysis shows how proteins shift into working mode

Aug 09, 2013

In an advance that will help scientists design and engineer proteins, a team including researchers from SLAC and Stanford has found a way to identify how protein molecules flex into specific atomic arrangements ...

Bringing out the best in X-ray crystallography data

Nov 05, 2013

(Phys.org) —"Function follows form" might have been written to describe proteins, as the M. C. Escher-esque folds and twists of nature's workhorse biomolecules enables each to carry out its specific responsibilities. ...

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NikFromNYC
1 / 5 (3) Nov 26, 2013
"These are the voyages of the Star Ship Enterprise...."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.