Electrified diamonds: Physicists on the trail of quantum information

Nov 19, 2013
Electrified Diamonds: Basel Physicists on the Trail of Quantum Information
Scanning tunneling microscopy image showing the surface structure of nanodiamonds.

With the help of tiny diamond crystals, physicists at the University of Basel have discovered new possibilities of quantum information: The scientists discovered at specific circumstances electric currents that made it possible to identify defects in the carbon lattice of single diamonds measuring only a few nanometers. The results have been published online in the magazine Nano Letters.

The team from the University of Basel and the French German Research Institute St. Louis (ISL) investigated of the size of only five nanometers (five millionths millimeter) using scanning tunneling microscopy and . The physicists then identified the atomic structure of the surface and observed crystalline, hexagonal carbon facets as well as graphitic reconstructions. In doing so, they discovered extra currents at specific voltages when the crystals were illuminated by green light.

These extra currents are related to the presence of defects in the carbon lattice of diamonds, so called Nitrogen-vacancy centers (NV-centers) that are optically active. These centers are promising candidates for future applications in processing systems, spin-magnetometry sensors or single photon sources. Their identification in the range of less than ten would have been very difficult with conventional methods, which is why the scientists applied a combination of different methods.

"With this study, we are able to show that it is possible to prove, with high resolution, the presence of optical centers in single nanodiamonds", says Prof. Ernst Meyer of the Department of Physics at the University of Basel. In the future, NV-centers could be used in quantum computers that work much more efficiently than conventional computers.

Explore further: Diamond imperfections pave the way to technology gold

More information: "Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer." Rémy Pawlak, Thilo Glatzel, Vincent Pichot, Loïc Schmidlin, Shigeki Kawai, Sweetlana Fremy, Denis Spitzer and Ernst Meyer. Nano Lett, 2013 Oct 24, DOI: 10.1021/nl402243s

add to favorites email to friend print save as pdf

Related Stories

Flawed diamonds: Gems for new technology

Oct 04, 2013

(Phys.org) —Using ultra-fast laser pulses, a team of researchers led by UA assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds containing nitrogen-vacancy ...

Diamond imperfections pave the way to technology gold

Nov 04, 2013

(Phys.org) —From supersensitive detections of magnetic fields to quantum information processing, the key to a number of highly promising advanced technologies may lie in one of the most common defects in ...

Recommended for you

Quantum holograms as atomic scale memory keepsake

5 hours ago

Russian scientists have developed a theoretical model of quantum memory for light, adapting the concept of a hologram to a quantum system. These findings from Anton Vetlugin and Ivan Sokolov from St. Petersburg ...

1980s aircraft helps quantum technology take flight

Oct 20, 2014

What does a 1980s experimental aircraft have to do with state-of-the art quantum technology? Lots, as shown by new research from the Quantum Control Laboratory at the University of Sydney, and published in Nature Physics today. ...

Quantum test strengthens support for EPR steering

Oct 14, 2014

Although the concept of "steering" in quantum mechanics was proposed back in 1935, it is still not completely understood today. Steering refers to the ability of one system to nonlocally affect, or steer, ...

User comments : 0